4,654 research outputs found

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF

    Data science for buildings, a multi-scale approach bridging occupants to smart-city energy planning

    Get PDF
    In a context of global carbon emission reduction goals, buildings have been identified to detain valuable energy-saving abilities. With the exponential increase of smart, connected building automation systems, massive amounts of data are now accessible for analysis. These coupled with powerful data science methods and machine learning algorithms present a unique opportunity to identify untapped energy-saving potentials from field information, and effectively turn buildings into active assets of the built energy infrastructure.However, the diversity of building occupants, infrastructures, and the disparities in collected information has produced disjointed scales of analytics that make it tedious for approaches to scale and generalize over the building stock.This coupled with the lack of standards in the sector has hindered the broader adoption of data science practices in the field, and engendered the following questioning:How can data science facilitate the scaling of approaches and bridge disconnected spatiotemporal scales of the built environment to deliver enhanced energy-saving strategies?This thesis focuses on addressing this interrogation by investigating data-driven, scalable, interpretable, and multi-scale approaches across varying types of analytical classes. The work particularly explores descriptive, predictive, and prescriptive analytics to connect occupants, buildings, and urban energy planning together for improved energy performances.First, a novel multi-dimensional data-mining framework is developed, producing distinct dimensional outlines supporting systematic methodological approaches and refined knowledge discovery. Second, an automated building heat dynamics identification method is put forward, supporting large-scale thermal performance examination of buildings in a non-intrusive manner. The method produced 64\% of good quality model fits, against 14\% close, and 22\% poor ones out of 225 Dutch residential buildings. %, which were open-sourced in the interest of developing benchmarks. Third, a pioneering hierarchical forecasting method was designed, bridging individual and aggregated building load predictions in a coherent, data-efficient fashion. The approach was evaluated over hierarchies of 37, 140, and 383 nodal elements and showcased improved accuracy and coherency performances against disjointed prediction systems.Finally, building occupants and urban energy planning strategies are investigated under the prism of uncertainty. In a neighborhood of 41 Dutch residential buildings, occupants were determined to significantly impact optimal energy community designs in the context of weather and economic uncertainties.Overall, the thesis demonstrated the added value of multi-scale approaches in all analytical classes while fostering best data-science practices in the sector from benchmarks and open-source implementations

    Towards scalable Community Networks topologies

    Get PDF
    Community Networks (CNs) are grassroots bottom-up initiatives that build local infrastructures, normally using Wi-Fi technology, to bring broadband networking in areas with inadequate offer of traditional infrastructures such as ADSL, FTTx or wide-band cellular (LTE, 5G). Albeit they normally operate as access networks to the Internet, CNs are ad-hoc networks that evolve based on local requirements and constraints, often including additional local services on top of Internet access. These networks grow in highly decentralized manner that radically deviates from the top-down network planning practiced in commercial mobile networks, depending, on the one hand, on the willingness of people to participate, and, on the other hand, on the feasibility of wireless links connecting the houses of potential participants with each other. In this paper, we present a novel methodology and its implementation into an automated tool, which enables the exercise of (light) centralized control to the dynamic and otherwise spontaneous CN growth process. The goal of the methodology is influencing the choices to connect a new node to the CN so that it can grow with more balance and to a larger size. Input to our methodology are open source resources about the physical terrain of the CN deployment area, such as Open Street Map and very detailed (less than 1 m resolution) LIDAR-based data about buildings layout and height, as well as technical descriptions and pricing data about off-the-shelf networking devices that are made available by manufacturers. Data related to demographics can be easily added to refine the environment description. With these data at hand, the tool can estimate the technical and economic feasibility of adding new nodes to the CN and actively assist new CN users in selecting proper equipment and CN node(s) to connect with to improve the CN scalability. We test our methodology in four different areas representing standard territorial characterization categories: urban, suburban, intermediate, and rural. In all four cases our tool shows that CNs scale to much larger size using the assisted, network-aware methodology when compared with de facto practices. Results also show that the CNs deployed with the assisted methodology are more balanced and have a lower per-node cost for the same per-node guaranteed bandwidth. Moreover, this is achieved with fewer devices per node, which means that the network is cheaper to build and easier to maintain.Peer ReviewedPostprint (author's final draft

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Sustaining Glasgow's Urban Networks: the Link Communities of Complex Urban Systems

    Get PDF
    As cities grow in population size and became more crowded (UN DESA, 2018), the main future challenges around the world will remain to be accommodating the growing urban population while drastically reducing environmental pressure. Contemporary urban agglomerations (large or small) constantly impose burden on the natural environment by conveying ecosystem services to close and distant places, through coupled human nature [infrastructure] systems (CHANS). Tobler’s first law in geography (1970) that states that “everything is related to everything else, but near things are more related than distant things” is now challenged by globalization. When this law was first established, the hypothesis referred to geological processes (Campbell and Shin, 2012, p.194) that were predominantly observed in pre-globalized economy, where freight was costly and mainly localized (Zhang et al., 2018). With the recent advances and modernisation made in transport technologies, most of them in the sea and air transportation (Zhang et al., 2018) and the growth of cities in population, natural resources and bi-products now travel great distances to infiltrate cities (Neuman, 2006) and satisfy human demands. Technical modernisation and the global hyperconnectivity of human interactions and trading, in the last thirty years alone resulted with staggering 94 per cent growth of resource extraction and consumption (Giljum et al., 2015). Local geographies (Kennedy, Cuddihy and Engel-Yan, 2007) will remain affected by global urbanisation (Giljum et al., 2015), and as a corollary, the operational inefficiencies of their local infrastructure networks, will contribute even more to the issues of environmental unsustainability on a global scale. Another challenge for future city-regions is the equity of public infrastructure services and policy creation that promote the same (Neuman and Hull, 2009). Public infrastructure services refer to services provisioned by networked infrastructure, which are subject to both public obligation and market rules. Therefore, their accessibility to all citizens needs to be safeguarded. The disparity of growth between networked infrastructure and socio-economic dynamics affects the sustainable assimilation and equal access to infrastructure in various districts in cities, rendering it as a privilege. Yet, the empirical evidence of whether the place of residence acts as a disadvantage to public service access and use, remains rather scarce (Clifton et al., 2016). The European Union recognized (EU, 2011) the issue of equality in accessibility (i.e. equity) critical for territorial cohesion and sustainable development across districts, municipalities and regions with diverse economic performance. Territorial cohesion, formally incorporated into the Treaty of Lisbon, now steers the policy frameworks of territorial development within the Union. Subsequently, the European Union developed a policy paradigm guided by equal access (Clifton et al., 2016) to public infrastructure services, considering their accessibility as instrumental aspect in achieving territorial cohesion across and within its member states. A corollary of increasing the equity to public infrastructure services among growing global population is the potential increase in environmental pressure they can impose, especially if this pressure is not decentralised and surges at unsustainable rate (Neuman, 2006). This danger varies across countries and continents, and is directly linked to the increase of urban population due to; [1] improved quality of life and increased life expectancy and/or [2] urban in-migration of rural population and/or [3] global political or economic immigration. These three rising urban trends demand new approaches to reimagine planning and design practices that foster infrastructure equity, whilst delivering environmental justice. Therefore, this research explores in depth the nature of growth of networked infrastructure (Graham and Marvin, 2001) as a complex system and its disparity from the socio-economic growth (or decline) of Glasgow and Clyde Valley city-region. The results of this research gain new understanding in the potential of using emerging tools from network science for developing optimization strategy that supports more cecentralized, efficient, fair and (as an outcome) sustainable enlargement of urban infrastructure, to accommodate new and empower current residents of the city. Applying the novel link clustering community detection algorithm (Ahn et al., 2010) in this thesis I have presented the potential for better understanding the complexity behind the urban system of networked infrastructure, through discovering their overlapping communities. As I will show in the literature review (Chapter 2), the long standing tradition of centralised planning practice relying on zoning and infiltrating infrastructure, left us with urban settlements which are failing to respond to the environmental pressure and the socio-economic inequalities. Building on the myriad of knowledge from planners, geographers, sociologists and computer scientists, I developed a new element (i.e. link communities) within the theory of urban studies that defines cities as complex systems. After, I applied a method borrowed from the study of complex networks to unpack their basic elements. Knowing the link (i.e. functional, or overlapping) communities of metropolitan Glasgow enabled me to evaluate the current level of communities interconnectedness and reveal the gaps as well as the potentials for improving the studied system’s performance. The complex urban system in metropolitan Glasgow was represented by its networked infrastructure, which essentially was a system of distinct sub-systems, one of them mapped by a physical and the other one by a social graph. The conceptual framework for this methodological approach was formalised from the extensively reviewed literature and methods utilising network science tools to detect community structure in complex networks. The literature review led to constructing a hypothesis claiming that the efficiency of the physical network’s topology is achieved through optimizing the number of nodes with high betweenness centrality, while the efficiency of the logical network’s topology is achieved by optimizing the number of links with high edge betweenness. The conclusion from the literature review presented through the discourse on to the primal problem in 7.4.1, led to modelling the two network topologies as separate graphs. The bipartite graph of their primal syntax was mirrored to be symmetrical and converted to dual. From the dual syntax I measured the complete accessibility (i.e. betweenness centrality) of the entire area and not only of the streets. Betweenness centrality of a node measures the number of shortest paths that pass through the node connecting pairs of nodes. The betweenness centrality is same as the integration of streets in space syntax, where the streets are analysed in their dual syntax representation. Street integration is the number of intersections the street shares with other streets and a high value means high accessibility. Edges with high betweenness are shared between strong communities. Based on the theoretical underpinnings of the network’s modularity and community structure analysed herein, it can be concluded that a complex network that is both robust and efficient (and in urban planning terminology ‘sustainable’) is consisted of numerous strong communities connected with each other by optimal number of links with high edge betweenness. To get this insight, the study detected the edge cut-set and vertex cut-set of the complex network. The outcome was a statistical model developed in the open source software R (Ihaka and Gentleman, 1996). The model empirical detects the network’s overlapping communities, determining the current sustainability of its physical and logical topologies. Initially, an assumption was that the number of communities within the infrastructure (physical) network layer were different from the one in the logical. They were detected using the Louvain method that performs graph partitioning on the hierarchical streets structure. Further, the number of communities in the relational network layer (i.e. accessibility to locations) was detected based on the OD accessibility matrix established from the functional dependency between the household locations and predefined points of interest. The communities from the graph of the ‘relational layer' were discovered with the single-link hierarchical clustering algorithm. The number of communities observed in the physical and the logical topologies of the eight shires significantly deviated

    Methods and Measures for Analyzing Complex Street Networks and Urban Form

    Full text link
    Complex systems have been widely studied by social and natural scientists in terms of their dynamics and their structure. Scholars of cities and urban planning have incorporated complexity theories from qualitative and quantitative perspectives. From a structural standpoint, the urban form may be characterized by the morphological complexity of its circulation networks - particularly their density, resilience, centrality, and connectedness. This dissertation unpacks theories of nonlinearity and complex systems, then develops a framework for assessing the complexity of urban form and street networks. It introduces a new tool, OSMnx, to collect street network and other urban form data for anywhere in the world, then analyze and visualize them. Finally, it presents a large empirical study of 27,000 street networks, examining their metric and topological complexity relevant to urban design, transportation research, and the human experience of the built environment.Comment: PhD thesis (2017), City and Regional Planning, UC Berkele
    • 

    corecore