2,067 research outputs found

    Ergodic Control and Polyhedral approaches to PageRank Optimization

    Full text link
    We study a general class of PageRank optimization problems which consist in finding an optimal outlink strategy for a web site subject to design constraints. We consider both a continuous problem, in which one can choose the intensity of a link, and a discrete one, in which in each page, there are obligatory links, facultative links and forbidden links. We show that the continuous problem, as well as its discrete variant when there are no constraints coupling different pages, can both be modeled by constrained Markov decision processes with ergodic reward, in which the webmaster determines the transition probabilities of websurfers. Although the number of actions turns out to be exponential, we show that an associated polytope of transition measures has a concise representation, from which we deduce that the continuous problem is solvable in polynomial time, and that the same is true for the discrete problem when there are no coupling constraints. We also provide efficient algorithms, adapted to very large networks. Then, we investigate the qualitative features of optimal outlink strategies, and identify in particular assumptions under which there exists a "master" page to which all controlled pages should point. We report numerical results on fragments of the real web graph.Comment: 39 page

    PageRank Optimization by Edge Selection

    Get PDF
    The importance of a node in a directed graph can be measured by its PageRank. The PageRank of a node is used in a number of application contexts - including ranking websites - and can be interpreted as the average portion of time spent at the node by an infinite random walk. We consider the problem of maximizing the PageRank of a node by selecting some of the edges from a set of edges that are under our control. By applying results from Markov decision theory, we show that an optimal solution to this problem can be found in polynomial time. Our core solution results in a linear programming formulation, but we also provide an alternative greedy algorithm, a variant of policy iteration, which runs in polynomial time, as well. Finally, we show that, under the slight modification for which we are given mutually exclusive pairs of edges, the problem of PageRank optimization becomes NP-hard.Comment: 30 pages, 3 figure

    PageRank optimization applied to spam detection

    Full text link
    We give a new link spam detection and PageRank demotion algorithm called MaxRank. Like TrustRank and AntiTrustRank, it starts with a seed of hand-picked trusted and spam pages. We define the MaxRank of a page as the frequency of visit of this page by a random surfer minimizing an average cost per time unit. On a given page, the random surfer selects a set of hyperlinks and clicks with uniform probability on any of these hyperlinks. The cost function penalizes spam pages and hyperlink removals. The goal is to determine a hyperlink deletion policy that minimizes this score. The MaxRank is interpreted as a modified PageRank vector, used to sort web pages instead of the usual PageRank vector. The bias vector of this ergodic control problem, which is unique up to an additive constant, is a measure of the "spamicity" of each page, used to detect spam pages. We give a scalable algorithm for MaxRank computation that allowed us to perform experimental results on the WEBSPAM-UK2007 dataset. We show that our algorithm outperforms both TrustRank and AntiTrustRank for spam and nonspam page detection.Comment: 8 pages, 6 figure

    Efficient Numerical Methods to Solve Sparse Linear Equations with Application to PageRank

    Full text link
    In this paper, we propose three methods to solve the PageRank problem for the transition matrices with both row and column sparsity. Our methods reduce the PageRank problem to the convex optimization problem over the simplex. The first algorithm is based on the gradient descent in L1 norm instead of the Euclidean one. The second algorithm extends the Frank-Wolfe to support sparse gradient updates. The third algorithm stands for the mirror descent algorithm with a randomized projection. We proof converges rates for these methods for sparse problems as well as numerical experiments support their effectiveness.Comment: 26 page

    Supervised Random Walks: Predicting and Recommending Links in Social Networks

    Full text link
    Predicting the occurrence of links is a fundamental problem in networks. In the link prediction problem we are given a snapshot of a network and would like to infer which interactions among existing members are likely to occur in the near future or which existing interactions are we missing. Although this problem has been extensively studied, the challenge of how to effectively combine the information from the network structure with rich node and edge attribute data remains largely open. We develop an algorithm based on Supervised Random Walks that naturally combines the information from the network structure with node and edge level attributes. We achieve this by using these attributes to guide a random walk on the graph. We formulate a supervised learning task where the goal is to learn a function that assigns strengths to edges in the network such that a random walker is more likely to visit the nodes to which new links will be created in the future. We develop an efficient training algorithm to directly learn the edge strength estimation function. Our experiments on the Facebook social graph and large collaboration networks show that our approach outperforms state-of-the-art unsupervised approaches as well as approaches that are based on feature extraction

    Exact Single-Source SimRank Computation on Large Graphs

    Full text link
    SimRank is a popular measurement for evaluating the node-to-node similarities based on the graph topology. In recent years, single-source and top-kk SimRank queries have received increasing attention due to their applications in web mining, social network analysis, and spam detection. However, a fundamental obstacle in studying SimRank has been the lack of ground truths. The only exact algorithm, Power Method, is computationally infeasible on graphs with more than 10610^6 nodes. Consequently, no existing work has evaluated the actual trade-offs between query time and accuracy on large real-world graphs. In this paper, we present ExactSim, the first algorithm that computes the exact single-source and top-kk SimRank results on large graphs. With high probability, this algorithm produces ground truths with a rigorous theoretical guarantee. We conduct extensive experiments on real-world datasets to demonstrate the efficiency of ExactSim. The results show that ExactSim provides the ground truth for any single-source SimRank query with a precision up to 7 decimal places within a reasonable query time.Comment: ACM SIGMOD 202
    • …
    corecore