53 research outputs found

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Development and utilisation of fibre optic-based monitoring systems for underground coal mines

    Get PDF
    The continuous economic growth and depleting shallow reserves have increased the number of deeper mining operations worldwide which has made safety and productivity more challenging due to the higher stresses, heat and increased gas contents. Any major improvements in safety and productivity require a reliable and real-time monitoring system that provides more comprehensive information about various processes. The current monitoring systems suffer from lack of reliability, accuracy and high capital and operating costs. Recent advancements in fibre-optic based sensing technology have introduced unique solutions for various underground coal mine applications such as health and safety, geotechnical, ventilation, borehole, mine environment and condition monitoring. This paper presents recent research, development and utilisation of this technology by a group of researchers at the University of Queensland (UQ) and CRCMining in Australia and Shandong Academy of Science in China

    Fibre optic conveyor monitoring system

    Get PDF

    Strain Distribution and Crack Detection in Concrete Overlays with Pulse Pre-Pump Brillouin Optical Time Domain Analysis

    Get PDF
    This report is focused on the measurement of strain distributions and crack detection in unbonded and bonded pavement overlays. The main objectives of this study are: (a) to characterize the strain sensing properties of distributed fiber optic sensors with recently developed pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA), (b) to develop an installation method for real world applications, (c) to document the performance of the PPP-BOTDA technology in unbonded/bonded pavement applications, and (d) to develop a numerical model to facilitate the analysis of mechanical behavior of unbonded pavement overlay under vehicle wheel loads. A thin concrete layer can be cast on top of a severely deteriorated pavement layer with a fabric sheet in between to rapidly and cost effectively improve the driving condition of existing roadways. Once cured, the concrete layer is divided into many panels and often referred to as the unbonded Portland cement concrete (PCC) overlay. The service life of PCC overlays can be appreciably extended by appropriate rehabilitation strategies at early stages of deterioration based on the information provided by health monitoring. The strain distribution and crack detection are of interest to engineers in this application. Minor or moderately deteriorated existing concrete pavements can also be resurfaced with a thin concrete layer to improve their driving condition. In this case, potential cracks in the existing pavement may easily penetrate through the new concrete layer. The way the potential slip at their interface develops over time is an interesting question to answer. This study reports an application of a commercial single mode optical fiber to measure strain distributions in full-scale fiber reinforced unbonded overlays. Prefabricated cementitious mortar grid instrumented with distributed fiber optic sensors, namely smart grid, was developed and proposed to address the logistics of handling delicate optical fibers, and thus facilitate the in-situ construction. The smart grids can be laid on top of the fabric sheet and embedded in concrete overlay. With the proposed method, the pavement overlays instrumented with distributed sensors were successfully constructed in Minnesota\u27s Cold Weather Road Research Facility (MnROAD). The optical fibers were characterized on a precision load frame at room temperature. A Neubrescope was used to measure strain distributions based on the pulse pre-pump Brillouin optical time domain analysis (PPPBOTDA). The overlays were subjected to repeated truck loads and eventually cracked. Strain distributions were obtained from the distributed fiber optic sensor. Cracks were identified and localized by mapping the strain distribution in which the sharp peaks represent the cracks. The strain distribution was further investigated using a three-dimensional finite element model incorporating nonlinear boundary conditions. Opening between substrate and overlay concrete was demonstrated, and strain distributions in overlay and substrate concrete were determined with the numerical model. For the bonded concrete overlays on existing pavement, a delamination detection method was developed and implemented using the distributed fiber optic sensors. Delamination can be identified as sharp peaks in the measured strain distributions

    Review of Fiber Optic Sensors for Structural Fire Engineering

    Get PDF
    Reliable and accurate measurements of temperature and strain in structures subjected to fire can be difficult to obtain using traditional sensing technologies based on electrical signals. Fiber optic sensors, which are based on light signals, solve many of the problems of monitoring structures in high temperature environments; however, they present their own challenges. This paper, which is intended for structural engineers new to fiber optic sensors, reviews various fiber optic sensors that have been used to make measurements in structure fires, including the sensing principles, fabrication, key characteristics, and recently-reported applications. Three categories of fiber optic sensors are reviewed: Grating-based sensors, interferometer sensors, and distributed sensors

    Synthesis and characterization of geopolymers for infrastructural applications

    Get PDF
    In this study, the synthesis process, composition, and microstructure as well as mechanical properties of geopolymers generated by 3 different kinds of raw materials (i.e., metakaolin, mixture of red mud and fly ash, mixture of red mud and rice husk ash) was explored. For geopolymers from identical raw materials, variable parameters involved in the synthesis were examined to investigate the extent and degree of geopolymerization. Uniaxial compression testing was used to examine the mechanical properties (i.e. compressive strength, stiffness, and failure strain). Then the composition and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) as well as energy-dispersive X-ray spectroscopy (EDXS). The results demonstrates that the geopolymeric products are not pure geopolymer binders, but geopolymeric composites, which generally comprise pure geopolymer binder as the major matrix, a small amount of unreacted source materials and nonreactive crystalline phases (e.g., quartz, anhydrite, and hematite) from parent materials as inactive fillers. Moreover, the study also shows that geopolymeric products can be used as a cementitious material to replace Portland cement in certain engineering applications, such as roadway construction, which brings environmental and economic benefits. Owing to the consistent properties of metakolin-based geopolymers, they were selected to be examined as smart adhesives for the infrastructure health monitoring. A distributed geopolymer-fiber optic sensing (G-FOS) system was proposed, where metakaolin-based geopolymers are used as smart adhesives to affix optical fibers to existing in-service structures to form the integrated G-FOS sensor for infrastructure health monitoring. The concept of such a G-FOS system was explained, and laboratory experiments as well as prototype testing were conducted to validate the concept and its feasibility. The results showed that varying the geopolymer composition (e.g., SiO2/Al2O3 ratio) and adding sand filler can both alter the tensile cracking strain for tailored sensing applications for both steel and concrete structures. Further prototype testing on steel and concrete demonstrated the feasibility of the proposed G-FOS system that can be used to monitor tensile strain and crack width for steel and concrete structures, respectively

    Measurement of Temperature Distribution Based on Optical Fiber-Sensing Technology and Tunable Diode Laser Absorption Spectroscopy

    Get PDF
    Temperature is an important physical quantity in most industrial processes. Distributed temperature sensor (DTS), fiber Bragg grating (FBG), and tunable diode laser absorption spectroscopy (TDLAS) are three primary techniques for temperature measurement using fiber optic sensing and spectrum technology. The DTS system can monitor space temperature field along the fiber in real time. In addition, it also can locate a fire source using two sections of optical fibers which are placed orthogonally to each other. The FBG temperature sensor is used to measure the point temperature. The temperature sensitivity of the bare FBG is 10.68 pm/°C and the linearity is 0.99954 in the range of 30–100°C. Based on tunable diode laser absorption spectroscopy (TDLAS), two-dimensional (2D) distribution reconstructions of gas temperature are realized using an algebraic reconstruction technique (ART). The results are in agreement with the simulation results, and the time resolution is less than 1 s

    Converged data and sensing over optical fiber networks

    Get PDF
    Internet connectivity, data and sensors have become increasingly important across all spheres of business and industry, especially in the mining sector. Recent years have seen deeper mining explorations as a result of the depletion of natural resources in shallow strata. Due to complex and unexpected geological conditions as well as significant ground stresses, deep stratum mining operations encounter a number of difficulties. It is essential that the mining industry be more innovative with their equipment and monitoring systems given the rise in expenses caused by energy consumption, concessions to surface integrity, worldwide freshwater shortage, as well as health and safety of miners. Any attempt to eliminate these mining consequences must start with early discovery. An effective plan to anticipate, prevent, or manage geohazards events must be in place because to these complex and unpredictably occurring geological circumstances. Due to their capacity to combine gigabits of data from remote locations within the mine to a centralized control centre, optical fiber offers a variety of distinctive advantages within the mining industry. In order to attain maximum productivity, modern and effective mining operations use enhanced control techniques and increasing mechanization. Additionally, optical fibers can be utilized in a mine to safely monitor seismic activity, methane, roof collapses, rock bursts, explosions, and dangerous underground mine settings. Multimode or multi-core fibers represent a particularly intriguing alternative for transmissions over small distances, especially for broad band local area networks like LANs, as they enable the use of affordable components. Due to the current state of these issues, there is a drive to create fiber optic communication links that can also function as distributed optical fiber sensors, where each point along the fiber can function as a continuous array of sensors. In this thesis, we suggested and experimentally demonstrated a converged solution for precise vibration sensing and high-speed data in mining applications. With wireless access for people and equipment inside cavities, the solution uses multimode fiber to link nearby mining cavities. To track vibrations and earth tremors causing rock falls, polarization-based vibration sensors over multimode fiber is used. With a modal dispersion penalty of just 1.6 dB, photonic data transmission across 100 m of multimode fiber is successfully accomplished. Successful 1.7 GHz wireless transmission across a distance of 1 m is demonstrated, and vibrations between 50 Hz and 1 kHz may be reliably detected to within 0.02 percent of the true value.Thesis (MSc) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202

    Unbonded Portland Cement Concrete Overlay/Pavement Monitoring with Integrated Grating and Scattering Optical Fiber Sensors

    Get PDF
    This report summarizes the findings and results from a laboratory and field study on the strain distribution and crack development in 3 thick concrete panels cast on top of existing concrete pavements as a rapid rehabilitation strategy for roadways. Both fiber Bragg gratings (FBG) and Brillouin Optical Time Domain Reflectometry/Analysis (BOTDR/A) were applied and tested for their feasibility and effectiveness in distributed strain measurement and crack detection. For laboratory tests, six 6\u27Ă—6 panels were cast similar to their corresponding field construction. Each was tested under both truck loads and under threepoint loads. The performance of distributed BOTDR/A strain measurements was compared with that of FBG sensors. In field study, the performance of FBG sensors was compared with that from strain gauges when the ambient temperature was measured with thermocouples. Overall, hairline to major cracks can be successfully detected with the distributed BOTDA measurements. The strain distributions measured from the FBG and BOTDR/A sensors are consistent. The FBG readings are in good agreement with those of strain gauges. Both FBG and BOTDR/A technologies are promising for pavement monitoring
    • …
    corecore