137 research outputs found

    Reliable Machine Learning Model for IIoT Botnet Detection

    Get PDF
    Due to the growing number of Internet of Things (IoT) devices, network attacks like denial of service (DoS) and floods are rising for security and reliability issues. As a result of these attacks, IoT devices suffer from denial of service and network disruption. Researchers have implemented different techniques to identify attacks aimed at vulnerable Internet of Things (IoT) devices. In this study, we propose a novel features selection algorithm FGOA-kNN based on a hybrid filter and wrapper selection approaches to select the most relevant features. The novel approach integrated with clustering rank the features and then applies the Grasshopper algorithm (GOA) to minimize the top-ranked features. Moreover, a proposed algorithm, IHHO, selects and adapts the neural network’s hyper parameters to detect botnets efficiently. The proposed Harris Hawks algorithm is enhanced with three improvements to improve the global search process for optimal solutions. To tackle the problem of population diversity, a chaotic map function is utilized for initialization. The escape energy of hawks is updated with a new nonlinear formula to avoid the local minima and better balance between exploration and exploitation. Furthermore, the exploitation phase of HHO is enhanced using a new elite operator ROBL. The proposed model combines unsupervised, clustering, and supervised approaches to detect intrusion behaviors. The N-BaIoT dataset is utilized to validate the proposed model. Many recent techniques were used to assess and compare the proposed model’s performance. The result demonstrates that the proposed model is better than other variations at detecting multiclass botnet attacks

    Secure Message Dissemination with QoS Guaranteed Routing in Internet of Vehicles

    Get PDF
    Internet of Vehicles (IoV) is a variant of vehicular adhoc network (VANET) where vehicles can communicate with other vehicles, infrastructure devices, parking lots and even pedestrians.  Communication to other entities is facilitates through various services like DSRC, C2C-CC. Fake messages can be propagated by attackers for various selfish needs. Complex authentication procedures can affect the propagation of emergency messages. Thus a light weight mechanism to ensure the trust of messages without affecting the delivery deadlines for emergency messages. Addressing this problem, this work proposes a clustering based network topology for IoV where routing is optimized for message dissemination of various classes using hybrid meta-heuristics.  In addition, two stage message authentication technique combining collaborative authentication with Bayesian filtering is proposed to verify the authenticity of message. Through simulation analysis, the proposed solution is found to detect fake messages with an accuracy of 96% with 10% lower processing delay compared to existing works

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Evolution and Stylistic Characteristics of Ancient Chinese Stone Carving Decoration LSTM-DL Approach with Image Visualization

    Get PDF
    In recent years, advancements in data analysis techniques and deep learning algorithms have revolutionized the field of art and cultural studies. Ancient Chinese stone carving decoration holds significant historical and cultural value, reflecting the artistic and stylistic evolution of different periods. This paper explored the Weighted Long Short-Term Memory Deep Learning (WLSTM – DL) evolution and stylistic characteristics of ancient Chinese stone carving decoration through the application of image visualization techniques combined with a Long Short-Term Memory (LSTM) time-series deep learning architecture. The WLSTM-DL model uses the optimized feature selection with the grasshopper optimization for the feature extraction and selection. By analyzing a comprehensive dataset of stone carving images from different periods, the WLSTM-DL model captures the temporal relationships and patterns in the evolution of stone carving decoration. The model utilizes LSTM, a specialized deep-learning architecture for time-series data, to uncover stylistic characteristics and identify significant changes over time. The findings of this study provide valuable insights into the evolution and stylistic development of ancient Chinese stone carving decoration. The application of image visualization techniques and the WLSTM-DL model showcase the potential of data analysis and deep learning in uncovering hidden narratives and understanding the intricate details of ancient artworks

    Chaos Embed Marine Predator (CMPA) Algorithm for Feature Selection

    Get PDF
    Data mining applications are growing with the availability of large data; sometimes, handling large data is also a typical task. Segregation of the data for extracting useful information is inevitable for designing modern technologies. Considering this fact, the work proposes a chaos embed marine predator algorithm (CMPA) for feature selection. The optimization routine is designed with the aim of maximizing the classification accuracy with the optimal number of features selected. The well-known benchmark data sets have been chosen for validating the performance of the proposed algorithm. A comparative analysis of the performance with some well-known algorithms advocates the applicability of the proposed algorithm. Further, the analysis has been extended to some of the well-known chaotic algorithms; first, the binary versions of these algorithms are developed and then the comparative analysis of the performance has been conducted on the basis of mean features selected, classification accuracy obtained and fitness function values. Statistical significance tests have also been conducted to establish the significance of the proposed algorithm

    Security of Internet of Things (IoT) Using Federated Learning and Deep Learning — Recent Advancements, Issues and Prospects

    Get PDF
    There is a great demand for an efficient security framework which can secure IoT systems from potential adversarial attacks. However, it is challenging to design a suitable security model for IoT considering the dynamic and distributed nature of IoT. This motivates the researchers to focus more on investigating the role of machine learning (ML) in the designing of security models. A brief analysis of different ML algorithms for IoT security is discussed along with the advantages and limitations of ML algorithms. Existing studies state that ML algorithms suffer from the problem of high computational overhead and risk of privacy leakage. In this context, this review focuses on the implementation of federated learning (FL) and deep learning (DL) algorithms for IoT security. Unlike conventional ML techniques, FL models can maintain the privacy of data while sharing information with other systems. The study suggests that FL can overcome the drawbacks of conventional ML techniques in terms of maintaining the privacy of data while sharing information with other systems. The study discusses different models, overview, comparisons, and summarization of FL and DL-based techniques for IoT security

    Enhanced grey wolf optimisation algorithm for feature selection in anomaly detection

    Get PDF
    Anomaly detection deals with identification of items that do not conform to an expected pattern or items present in a dataset. The performance of different mechanisms utilized to perform the anomaly detection depends heavily on the group of features used. Thus, not all features in the dataset can be used in the classification process since some features may lead to low performance of classifier. Feature selection (FS) is a good mechanism that minimises the dimension of high-dimensional datasets by deleting the irrelevant features. Modified Binary Grey Wolf Optimiser (MBGWO) is a modern metaheuristic algorithm that has successfully been used for FS for anomaly detection. However, the MBGWO has several issues in finding a good quality solution. Thus, this study proposes an enhanced binary grey wolf optimiser (EBGWO) algorithm for FS in anomaly detection to overcome the algorithm issues. The first modification enhances the initial population of the MBGWO using a heuristic based Ant Colony Optimisation algorithm. The second modification develops a new position update mechanism using the Bat Algorithm movement. The third modification improves the controlled parameter of the MBGWO algorithm using indicators from the search process to refine the solution. The EBGWO algorithm was evaluated on NSL-KDD and six (6) benchmark datasets from the University California Irvine (UCI) repository against ten (10) benchmark metaheuristic algorithms. Experimental results of the EBGWO algorithm on the NSL-KDD dataset in terms of number of selected features and classification accuracy are superior to other benchmark optimisation algorithms. Moreover, experiments on the six (6) UCI datasets showed that the EBGWO algorithm is superior to the benchmark algorithms in terms of classification accuracy and second best for the number of selected features. The proposed EBGWO algorithm can be used for FS in anomaly detection tasks that involve any dataset size from various application domains

    Load Frequency Control (LFC) Strategies in Renewable Energy‐Based Hybrid Power Systems:A Review

    Get PDF
    The hybrid power system is a combination of renewable energy power plants and conventional energy power plants. This integration causes power quality issues including poor settling times and higher transient contents. The main issue of such interconnection is the frequency variations caused in the hybrid power system. Load Frequency Controller (LFC) design ensures the reliable and efficient operation of the power system. The main function of LFC is to maintain the system frequency within safe limits, hence keeping power at a specific range. An LFC should be supported with modern and intelligent control structures for providing the adequate power to the system. This paper presents a comprehensive review of several LFC structures in a diverse configuration of a power system. First of all, an overview of a renewable energy-based power system is provided with a need for the development of LFC. The basic operation was studied in single-area, multi-area and multi-stage power system configurations. Types of controllers developed on different techniques studied with an overview of different control techniques were utilized. The comparative analysis of various controllers and strategies was performed graphically. The future scope of work provided lists the potential areas for conducting further research. Finally, the paper concludes by emphasizing the need for better LFC design in complex power system environments

    ALEC: Active learning with ensemble of classifiers for clinical diagnosis of coronary artery disease

    Get PDF
    Invasive angiography is the reference standard for coronary artery disease (CAD) diagnosis but is expensive and associated with certain risks. Machine learning (ML) using clinical and noninvasive imaging parameters can be used for CAD diagnosis to avoid the side effects and cost of angiography. However, ML methods require labeled samples for efficient training. The labeled data scarcity and high labeling costs can be mitigated by active learning. This is achieved through selective query of challenging samples for labeling. To the best of our knowledge, active learning has not been used for CAD diagnosis yet. An Active Learning with Ensemble of Classifiers (ALEC) method is proposed for CAD diagnosis, consisting of four classifiers. Three of these classifiers determine whether a patient’s three main coronary arteries are stenotic or not. The fourth classifier predicts whether the patient has CAD or not. ALEC is first trained using labeled samples. For each unlabeled sample, if the outputs of the classifiers are consistent, the sample along with its predicted label is added to the pool of labeled samples. Inconsistent samples are manually labeled by medical experts before being added to the pool. The training is performed once more using the samples labeled so far. The interleaved phases of labeling and training are repeated until all samples are labeled. Compared with 19 other active learning algorithms, ALEC combined with a support vector machine classifier attained superior performance with 97.01% accuracy. Our method is justified mathematically as well. We also comprehensively analyze the CAD dataset used in this paper. As part of dataset analysis, features pairwise correlation is computed. The top 15 features contributing to CAD and stenosis of the three main coronary arteries are determined. The relationship between stenosis of the main arteries is presented using conditional probabilities. The effect of considering the number of stenotic arteries on sample discrimination is investigated. The discrimination power over dataset samples is visualized, assuming each of the three main coronary arteries as a sample label and considering the two remaining arteries as sample features

    Fractal feature selection model for enhancing high-dimensional biological problems

    Get PDF
    The integration of biology, computer science, and statistics has given rise to the interdisciplinary field of bioinformatics, which aims to decode biological intricacies. It produces extensive and diverse features, presenting an enormous challenge in classifying bioinformatic problems. Therefore, an intelligent bioinformatics classification system must select the most relevant features to enhance machine learning performance. This paper proposes a feature selection model based on the fractal concept to improve the performance of intelligent systems in classifying high-dimensional biological problems. The proposed fractal feature selection (FFS) model divides features into blocks, measures the similarity between blocks using root mean square error (RMSE), and determines the importance of features based on low RMSE. The proposed FFS is tested and evaluated over ten high-dimensional bioinformatics datasets. The experiment results showed that the model significantly improved machine learning accuracy. The average accuracy rate was 79% with full features in machine learning algorithms, while FFS delivered promising results with an accuracy rate of 94%
    corecore