10,535 research outputs found

    Specificity and coherence of body representations

    Get PDF
    Bodily illusions differently affect body representations underlying perception and action. We investigated whether this task dependence reflects two distinct dimensions of embodiment: the sense of agency and the sense of the body as a coherent whole. In experiment 1 the sense of agency was manipulated by comparing active versus passive movements during the induction phase in a video rubber hand illusion (vRHI) setup. After induction, proprioceptive biases were measured both by perceptual judgments of hand position, as well as by measuring end-point accuracy of subjects' active pointing movements to an external object with the affected hand. The results showed, first, that the vRHI is largely perceptual: passive perceptual localisation judgments were altered, but end-point accuracy of active pointing responses with the affected hand to an external object was unaffected. Second, within the perceptual judgments, there was a novel congruence effect, such that perceptual biases were larger following passive induction of vRHI than following active induction. There was a trend for the converse effect for pointing responses, with larger pointing bias following active induction. In experiment 2, we used the traditional RHI to investigate the coherence of body representation by synchronous stimulation of either matching or mismatching fingers on the rubber hand and the participant's own hand. Stimulation of matching fingers induced a local proprioceptive bias for only the stimulated finger, but did not affect the perceived shape of the hand as a whole. In contrast, stimulation of spatially mismatching fingers eliminated the RHI entirely. The present results show that (i) the sense of agency during illusion induction has specific effects, depending on whether we represent our body for perception or to guide action, and (ii) representations of specific body parts can be altered without affecting perception of the spatial configuration of the body as a whole

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Timing disownership experiences in the rubber hand illusion

    Get PDF
    Some investigators of the rubber hand illusion (RHI) have suggested that when standard RHI induction procedures are employed, if the rubber hand is experienced by participants as owned, their corresponding biological hands are experienced as disowned. Others have demurred: drawing upon a variety of experimental data and conceptual considerations, they infer that experience of the RHI might include the experience of a supernumerary limb, but that experienced disownership of biological hands does not occur. Indeed, some investigators even categorically deny that any experimental paradigm has been employed or any evidence can be adduced to support the claim that disownership experiences occur during the RHI. It goes without saying that RHI experiences can be elusive, and that there is some evidence to support claims that supernumerary limb experiences can sometimes occur. Here, however, we test the claim that the conscious experience of disownership can occur during the RHI. In order to test this claim, we developed two new online proxies—onset time for the illusion and illusion duration—and combined these with established questionnaires that concern the conscious contents of the RHI, in particular ownership/disownership experiences. Both online proxy data and post hoc questionnaire data converge in supporting the claim that disownership experiences do occur, at least when the left hand is the object of investigation. Our findings that onset time and illusion duration are reliable measures suggest that investigations of the RHI stand to benefit by devoting more attention to data collected while the RHI is being experienced, in particular data concerning temporal dynamics

    Functional and structural brain differences associated with mirror-touch synaesthesia

    Get PDF
    Observing touch is known to activate regions of the somatosensory cortex but the interpretation of this finding is controversial (e.g. does it reflect the simulated action of touching or the simulated reception of touch?). For most people, observing touch is not linked to reported experiences of feeling touch but in some people it is (mirror-touch synaesthetes). We conducted an fMRI study in which participants (mirror-touch synaesthetes, controls) watched movies of stimuli (face, dummy, object) being touched or approached. In addition we examined whether mirror touch synaesthesia is associated with local changes of grey and white matter volume in the brain using VBM (voxel-based morphometry). Both synaesthetes and controls activated the somatosensory system (primary and secondary somatosensory cortices, SI and SII) when viewing touch, and the same regions were activated (by a separate localiser) when feeling touch — i.e. there is a mirror system for touch. However, when comparing the two groups, we found evidence that SII seems to play a particular important role in mirror-touch synaesthesia: in synaesthetes, but not in controls, posterior SII was active for watching touch to a face (in addition to SI and posterior temporal lobe); activity in SII correlated with subjective intensity measures of mirror-touch synaesthesia (taken outside the scanner), and we observed an increase in grey matter volume within the SII of the synaesthetes' brains. In addition, the synaesthetes showed hypo-activity when watching touch to a dummy in posterior SII. We conclude that the secondary somatosensory cortex has a key role in this form of synaesthesia

    NASA space station automation: AI-based technology review. Executive summary

    Get PDF
    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics
    corecore