2,848 research outputs found

    WHAT IS A COAST GUARD?: DEVELOPING A NOMENCLATURE MODEL FOR COAST GUARD

    Get PDF
    “Coast Guards” or “Coastguards” (CG) have played a vital role in the maritime security systems of nations. The diversified utility of CGs by nations and the lack of an internationally accepted nomenclature for agencies bearing the name CG have given rise to complex issues related to these agencies. In this study, the rationales for developing a CG nomenclature model include enhancing maritime security cooperation, distinguishing CGs from naval classifications, fostering CG norms, and identifying the role of a CG in an armed conflict. To achieve this goal, the study performed a qualitative analysis of 15 CG agencies. Findings from the analysis revealed that key elements of the CG roles are civil maritime emergency response (MER) and maritime law enforcement (MLE). Based on the findings, a CG was defined as a maritime organization, assigned with the primary authority to undertake constabulary and emergency response operations within the maritime jurisdiction of a state. From this, the modeling process devised a CG hierarchical taxonomy to obtain a CG nomenclature, which includes military CGs (“Gray” model), civil-constabulary CGs (“Blue” model), and civil emergency response CGs (“White” model). The study achieved its objective of developing a practical CG nomenclature, which also fulfills the rationale behind developing a CG classification.Lieutenant Colonel, Maldivian Coast GuardApproved for public release. Distribution is unlimited

    Interoperability in a Heterogeneous Team of Search and Rescue Robots

    Get PDF
    Search and rescue missions are complex operations. A disaster scenario is generally unstructured, time‐varying and unpredictable. This poses several challenges for the successful deployment of unmanned technology. The variety of operational scenarios and tasks lead to the need for multiple robots of different types, domains and sizes. A priori planning of the optimal set of assets to be deployed and the definition of their mission objectives are generally not feasible as information only becomes available during mission. The ICARUS project responds to this challenge by developing a heterogeneous team composed by different and complementary robots, dynamically cooperating as an interoperable team. This chapter describes our approach to multi‐robot interoperability, understood as the ability of multiple robots to operate together, in synergy, enabling multiple teams to share data, intelligence and resources, which is the ultimate objective of ICARUS project. It also includes the analysis of the relevant standardization initiatives in multi‐robot multi‐domain systems, our implementation of an interoperability framework and several examples of multi‐robot cooperation of the ICARUS robots in realistic search and rescue missions

    Service-oriented agent architecture for autonomous maritime vehicles

    Get PDF
    Advanced ocean systems are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. This Thesis proposes an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. They are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The architectural foundation to achieve the ICA lays on the flexibility of service-oriented computing and agent technology. An ontological database captures the operator skills, platform capabilities and, changes in the environment. The information captured, stored as knowledge, enables reasoning agents to plan missions based on the current situation. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This Thesis also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions

    Data Quality Assessment for Maritime Situation Awareness

    No full text
    International audienceThe Automatic Identification System (AIS) initially designed to ensure maritime security through continuous position reports has been progressively used for many extended objectives. In particular it supports a global monitoring of the maritime domain for various purposes like safety and security but also traffic management, logistics or protection of strategic areas, etc. In this monitoring, data errors, misuse, irregular behaviours at sea, malfeasance mechanisms and bad navigation practices have inevitably emerged either by inattentiveness or voluntary actions in order to circumvent, alter or exploit such a system in the interests of offenders. This paper introduces the AIS system and presents vulnerabilities and data quality assessment for decision making in maritime situational awareness cases. The principles of a novel methodological approach for modelling, analysing and detecting these data errors and falsification are introduced

    Girt by sea: understanding Australia’s maritime domains in a networked world

    Get PDF
    This study aims to provide the background, language and context necessary for an informed understanding of the challenges and dilemmas faced by those responsible for the efficacy of Australia’s maritime domain awareness system. Abstract Against a rapidly changing region dominated by the rise of China, India and, closer to home, Indonesia, Australia’s approaches to understanding its maritime domains will be influenced by strategic factors and diplomatic judgements as well as operational imperatives.  Australia’s alliance relationship with the United States and its relationships with regional neighbours may be expected to have a profound impact on the strength of the information sharing and interoperability regimes on which so much of Australia’s maritime domain awareness depends. The purpose of this paper is twofold.  First, it seeks to explain in plain English some of the principles, concepts and terms that maritime domain awareness practitioners grapple with on a daily basis.  Second, it points to a series of challenges that governments face in deciding how to spend scarce tax dollars to deliver a maritime domain awareness system that is necessary and sufficient for the protection and promotion of Australia’s national interests

    Ethical Control of Unmanned Systems: lifesaving/lethal scenarios for naval operations

    Get PDF
    Prepared for: Raytheon Missiles & Defense under NCRADA-NPS-19-0227This research in Ethical Control of Unmanned Systems applies precepts of Network Optional Warfare (NOW) to develop a three-step Mission Execution Ontology (MEO) methodology for validating, simulating, and implementing mission orders for unmanned systems. First, mission orders are represented in ontologies that are understandable by humans and readable by machines. Next, the MEO is validated and tested for logical coherence using Semantic Web standards. The validated MEO is refined for implementation in simulation and visualization. This process is iterated until the MEO is ready for implementation. This methodology is applied to four Naval scenarios in order of increasing challenges that the operational environment and the adversary impose on the Human-Machine Team. The extent of challenge to Ethical Control in the scenarios is used to refine the MEO for the unmanned system. The research also considers Data-Centric Security and blockchain distributed ledger as enabling technologies for Ethical Control. Data-Centric Security is a combination of structured messaging, efficient compression, digital signature, and document encryption, in correct order, for round-trip messaging. Blockchain distributed ledger has potential to further add integrity measures for aggregated message sets, confirming receipt/response/sequencing without undetected message loss. When implemented, these technologies together form the end-to-end data security that ensures mutual trust and command authority in real-world operational environments—despite the potential presence of interfering network conditions, intermittent gaps, or potential opponent intercept. A coherent Ethical Control approach to command and control of unmanned systems is thus feasible. Therefore, this research concludes that maintaining human control of unmanned systems at long ranges of time-duration and distance, in denied, degraded, and deceptive environments, is possible through well-defined mission orders and data security technologies. Finally, as the human role remains essential in Ethical Control of unmanned systems, this research recommends the development of an unmanned system qualification process for Naval operations, as well as additional research prioritized based on urgency and impact.Raytheon Missiles & DefenseRaytheon Missiles & Defense (RMD).Approved for public release; distribution is unlimited

    Of Models, Rationales and Prototypes: Studying Designer Needs in an Airborne Maritime Surveillance Drawing Tool to Support Audio Communication

    No full text
    International audienceIn this work, we seek to understand the needs of interaction designers involved in industrial system engineering processes. While current research offers a set of methods and tools for them, we believe that more empirical user studies focusing on designers are needed, in particular to support how model-based activity analysis may inform their decisions. Our designers’ need analysis is conducted through participatory design and contextual inquiry, and applied through a real use-case project: a distributed tactile tool for airborne maritime surveillance. Thanks to this study, we report on our insights on the usability problems and needs related in particular to scenario-based modeling, model-based design rationales and design-based model refinement

    Search and rescue in the High North, grounded in bilateral agreements between Russia ande Norway, our cross-cultural cooperation during exercises and tactical operations

    Get PDF
    Masteroppgave i bedriftsledelse (MBA) - Universitetet i Nordland, 201
    • 

    corecore