5,927 research outputs found

    Identification and challenge of human factors under the trend of MASS development

    Get PDF

    Transport 2040 : analysis of technical developments in transport - maritime, air, rail and road

    Get PDF
    A number of technical and socio-technical factors are driving the development and adoption of automation. The report, Transport 2040: Automation, Technology, Employment – The Future of Work, provided an overview of the most important trends forecasted to affect the global transport sector by 2040. This current report provides additional details of that assessment. The research conducted is guided by a transport-technology analytical model that provides a structure for a systematic review across different modes of transport. This report reviews, in particular, the transportation technology through the lens of transport vehicles (e.g. ships, trucks, trains, aircraft) and the technical infrastructure that is needed for the operation of the vehicle (e.g. waterways and harbours, roads, railway tracks and freight terminals, as well as controlled airspace and airports).https://commons.wmu.se/lib_reports/1076/thumbnail.jp

    Planetary rover technology development requirements

    Get PDF
    Planetary surface (including lunar) mobility and sampling capability is required to support proposed future National Aeronautics and Space Administration (NASA) solar system exploration missions. The NASA Office of Aeronautics and Space Technology (OAST) is addressing some of these technology needs in its base research and development program, the Civil Space Technology Initiative (CSTI) and a new technology initiative entitled Pathfinder. The Pathfinder Planetary Rover (PPR) and Sample Acquisition, Analysis and Preservation (SAAP) programs will develop and validate the technologies needed to enable both robotic and piloted rovers on various planetary surfaces. The technology requirements for a planetary roving vehicle and the development plans of the PPR and SAAP programs are discussed

    Aspects of automation of selective cleaning

    Get PDF
    Cleaning (pre-commercial thinning) is a silvicultural operation, primarily used to improve growing conditions of remaining trees in young stands (ca. 3 - 5 m of height). Cleaning costs are considered high in Sweden and the work is laborious. Selective cleaning with autonomous artificial agents (robots) may rationalise the work, but requires new knowledge. This thesis aims to analyse key issues regarding automation of cleaning; suggesting general solutions and focusing on automatic selection of main-stems. The essential requests put on cleaning robots are to render acceptable results and to be cost competitive. They must be safe and be able to operate independently and unattended for several hours in a dynamic and non-deterministic environment. Machine vision, radar, and laser scanners are promising techniques for obstacle avoidance, tree identification, and tool control. Horizontal laser scannings were made, demonstrating the possibility to find stems and make estimations regarding their height and diameter. Knowledge regarding stem selections was retrieved through qualitative interviews with persons performing cleaning. They consider similar attributes of trees, and these findings and current cleaning manuals were used in combination with a field inventory in the development of a decision support system (DSS). The DSS selects stems by the attributes species, position, diameter, and damage. It was used to run computer-based simulations in a variety of young forests. A general follow-up showed that the DSS produced acceptable results. The DSS was further evaluated by comparing its selections with those made by experienced cleaners, and by a test in which laymen performed cleanings following the system. The DSS seems to be useful and flexible, since it can be adjusted in accordance with the cleaners’ results. The laymen’s results implied that the DSS is robust and that it could be used as a training tool. Using the DSS in automatic, or semi-automatic, cleaning operations should be possible if and when selected attributes can be automatically perceived. A suitable base-machine and thorough research, regarding e.g. safety, obstacle avoidance, and target identification, is needed to develop competitive robots. However, using the DSS as a training-tool for inexperienced cleaners could be an interesting option as of today

    Improving situation awareness of a single human operator interacting with multiple unmanned vehicles: first results

    Get PDF
    In the context of the supervision of one or several unmanned vehicles by a human operator, the design of an adapted user interface is a major challenge. Therefore, in the context of an existing experimental set up composed of a ground station and heterogeneous unmanned ground and air vehicles we aim at redesigning the human-robot interactions to improve the operator's situation awareness. We base our new design on a classical user centered approach

    CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale Ride-Hailing Platforms

    Get PDF
    How to optimally dispatch orders to vehicles and how to tradeoff between immediate and future returns are fundamental questions for a typical ride-hailing platform. We model ride-hailing as a large-scale parallel ranking problem and study the joint decision-making task of order dispatching and fleet management in online ride-hailing platforms. This task brings unique challenges in the following four aspects. First, to facilitate a huge number of vehicles to act and learn efficiently and robustly, we treat each region cell as an agent and build a multi-agent reinforcement learning framework. Second, to coordinate the agents from different regions to achieve long-term benefits, we leverage the geographical hierarchy of the region grids to perform hierarchical reinforcement learning. Third, to deal with the heterogeneous and variant action space for joint order dispatching and fleet management, we design the action as the ranking weight vector to rank and select the specific order or the fleet management destination in a unified formulation. Fourth, to achieve the multi-scale ride-hailing platform, we conduct the decision-making process in a hierarchical way where a multi-head attention mechanism is utilized to incorporate the impacts of neighbor agents and capture the key agent in each scale. The whole novel framework is named as CoRide. Extensive experiments based on multiple cities real-world data as well as analytic synthetic data demonstrate that CoRide provides superior performance in terms of platform revenue and user experience in the task of city-wide hybrid order dispatching and fleet management over strong baselines.Comment: CIKM 201

    Cyber-Physical Embedded Systems with Transient Supervisory Command and Control: A Framework for Validating Safety Response in Automated Collision Avoidance Systems

    Get PDF
    The ability to design and engineer complex and dynamical Cyber-Physical Systems (CPS) requires a systematic view that requires a definition of level of automation intent for the system. Since CPS covers a diverse range of systemized implementations of smart and intelligent technologies networked within a system of systems (SoS), the terms “smart” and “intelligent” is frequently used in describing systems that perform complex operations with a reduced need of a human-agent. The difference between this research and most papers in publication on CPS is that most other research focuses on the performance of the CPS rather than on the correctness of its design. However, by using both human and machine agency at different levels of automation, or autonomy, the levels of automation have profound implications and affects to the reliability and safety of the CPS. The human-agent and the machine-agent are in a tidal lock of decision-making using both feedforward and feedback information flows in similar processes, where a transient shift within the level of automation when the CPS is operating can have undesired consequences. As CPS systems become more common, and higher levels of autonomy are embedded within them, the relationship between human-agent and machine-agent also becomes more complex, and the testing methodologies for verification and validation of performance and correctness also become more complex and less clear. A framework then is developed to help the practitioner to understand the difficulties and pitfalls of CPS designs and provides guidance to test engineering design of soft computational systems using combinations of modeling, simulation, and prototyping

    How to keep drivers engaged while supervising driving automation? A literature survey and categorization of six solution areas

    Get PDF
    This work aimed to organise recommendations for keeping people engaged during human supervision of driving automation, encouraging a safe and acceptable introduction of automated driving systems. First, heuristic knowledge of human factors, ergonomics, and psychological theory was used to propose solution areas to human supervisory control problems of sustained attention. Driving and non-driving research examples were drawn to substantiate the solution areas. Automotive manufacturers might (1) avoid this supervisory role altogether, (2) reduce it in objective ways or (3) alter its subjective experiences, (4) utilize conditioning learning principles such as with gamification and/or selection/training techniques, (5) support internal driver cognitive processes and mental models and/or (6) leverage externally situated information regarding relations between the driver, the driving task, and the driving environment. Second, a cross-domain literature survey of influential human-automation interaction research was conducted for how to keep engagement/attention in supervisory control. The solution areas (via numeric theme codes) were found to be reliably applied from independent rater categorisations of research recommendations. Areas (5) and (6) were addressed by around 70% or more of the studies, areas (2) and (4) in around 50% of the studies, and areas (3) and (1) in less than around 20% and 5%, respectively. The present contribution offers a guiding organisational framework towards improving human attention while supervising driving automation.submittedVersio

    Semantic-based adaptive mission planning for unmanned underwater vehicles

    Get PDF
    Current underwater robotic platforms rely upon waypoint-based scripted missions which are described by the operator a-priori. This renders systems incapable of reacting to the unexpected. In this thesis, we claim that the ability to autonomously adapt the decision making process is the key to facilitating the change over from human intervention to intelligent autonomy. We identify goal-based declarative mission planning as an attractive solution to autonomous adaptability because it combines autonomous decision making with higher levels of human interaction. Goal-based mission planning requires the use of abstract knowledge representation and situation awareness to link the prior knowledge provided by the operator with the information coming from the processed sensor data. To achieve this, we propose a semantic-based knowledge representation framework that allows this integration of prior and processed information among all different agents available in the platform. In order to evaluate adaptive mission planning techniques, we also introduce a novel metric which measures the proximity between plans. We demonstrate that this metric is better informed than previous metrics for measuring the adaptation process. In this thesis we implement three different approaches to goal-based mission planning in order to investigate which approach is most appropriate under different circumstances. The first approach, continuous mission planning, focusses on long-term deployment. This approach is based on a continuous re-assessment of the status of the mission environment. Using our proximity metric, we evaluated this approach and show that there is a high degree of similarity between our approach and the humanly driven adaptation, both in a known static environment and in a partially-known dynamic discoverable environment. The second, service-oriented mission planning, makes use of the semantic framework to provide autonomous mission planning for the dynamic discovery of the services published by the different agents in the system. This allows platform independence, easing the manual creation of mission plans, and robustness to changes. We show that this approach produces the same plans as the baseline which was explicitly provided with the platform configuration. The last approach, mission plan repair, handles the scenario where small changes occur in the mission environment and there are limited resources for planning. We develop and deploy a mission plan repair approach within a semantic-based autonomous planning system in a real underwater vehicle. Experiments demonstrate that the integrated system is capable of providing mission adaptation for maintaining the operability of the host platform in the face of unexpected events

    The Underpinnings of Workload in Unmanned Vehicle Systems

    Get PDF
    This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems
    corecore