2,851 research outputs found

    Characterizing an image intensifier in an full-field range image system

    Get PDF
    We are developing a high precision full-field range imaging system. An integral component in this system is an image intensifier, which is modulated at frequencies up to 100 MHz. The range measurement precision is dictated by the image intensifier performance, in particular, the achievable modulation frequency, modulation depth, and waveform shape. By characterizing the image intensifier response, undesirable effects can be observed and quantified with regards to the consequence on the resulting range measurements, and the optimal operating conditions can be selected to minimize these disturbances. The characterization process utilizes a pulsed laser source to temporally probe the gain of the image intensifier. The laser is pulsed at a repetition rate slightly different to the image intensifier modulation frequency, producing a continuous phase shift between the two signals. A charge coupled device samples the image intensifier output, capturing the response over a complete modulation period. Deficiencies in our measured response are clearly identifiable and simple modifications to the configuration of our electrical driver circuit improve the modulation performance

    Real-time Spatial Detection and Tracking of Resources in a Construction Environment

    Get PDF
    Construction accidents with heavy equipment and bad decision making can be based on poor knowledge of the site environment and in both cases may lead to work interruptions and costly delays. Supporting the construction environment with real-time generated three-dimensional (3D) models can help preventing accidents as well as support management by modeling infrastructure assets in 3D. Such models can be integrated in the path planning of construction equipment operations for obstacle avoidance or in a 4D model that simulates construction processes. Detecting and guiding resources, such as personnel, machines and materials in and to the right place on time requires methods and technologies supplying information in real-time. This paper presents research in real-time 3D laser scanning and modeling using high range frame update rate scanning technology. Existing and emerging sensors and techniques in three-dimensional modeling are explained. The presented research successfully developed computational models and algorithms for the real-time detection, tracking, and three-dimensional modeling of static and dynamic construction resources, such as workforce, machines, equipment, and materials based on a 3D video range camera. In particular, the proposed algorithm for rapidly modeling three-dimensional scenes is explained. Laboratory and outdoor field experiments that were conducted to validate the algorithm’s performance and results are discussed

    SLM-based Digital Adaptive Coronagraphy: Current Status and Capabilities

    Full text link
    Active coronagraphy is deemed to play a key role for the next generation of high-contrast instruments, notably in order to deal with large segmented mirrors that might exhibit time-dependent pupil merit function, caused by missing or defective segments. To this purpose, we recently introduced a new technological framework called digital adaptive coronagraphy (DAC), making use of liquid-crystal spatial light modulators (SLMs) display panels operating as active focal-plane phase mask coronagraphs. Here, we first review the latest contrast performance, measured in laboratory conditions with monochromatic visible light, and describe a few potential pathways to improve SLM coronagraphic nulling in the future. We then unveil a few unique capabilities of SLM-based DAC that were recently, or are currently in the process of being, demonstrated in our laboratory, including NCPA wavefront sensing, aperture-matched adaptive phase masks, coronagraphic nulling of multiple star systems, and coherent differential imaging (CDI).Comment: 14 pages, 9 figures, to appear in Proceedings of the SPIE, paper 10706-9

    An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 microns

    Full text link
    Integrated-optic, astronomical, two-beam and three-beam, interferometric combiners have been designed and fabricated for operation in the L band (3 - 4 microns) for the first time. The devices have been realized in titanium-indiffused, x-cut lithium niobate substrates, and on-chip electro-optic fringe scanning has been demonstrated. White light fringes were produced in the laboratory using the two-beam combiner integrated with an on-chip Y-splitter.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under la

    Towards Flight Trials for an Autonomous UAV Emergency Landing using Machine Vision

    Get PDF
    This paper presents the evolution and status of a number of research programs focussed on developing an automated fixed wing UAV landing system. Results obtained in each of the three main areas of research as vision-based site identification, path and trajectory planning and multi-criteria decision making are presented. The results obtained provide a baseline for further refinements and constitute the starting point for the implementation of a prototype system ready for flight testing
    corecore