414 research outputs found

    VANET addressing scheme incorporating geographical information in standard IPv6 header

    Get PDF

    Coherent, automatic address resolution for vehicular ad hoc networks

    Get PDF
    Published in: Int. J. of Ad Hoc and Ubiquitous Computing, 2017 Vol.25, No.3, pp.163 - 179. DOI: 10.1504/IJAHUC.2017.10001935The interest in vehicular communications has increased notably. In this paper, the use of the address resolution (AR) procedures is studied for vehicular ad hoc networks (VANETs). We analyse the poor performance of AR transactions in such networks and we present a new proposal called coherent, automatic address resolution (CAAR). Our approach inhibits the use of AR transactions and instead increases the usefulness of routing signalling to automatically match the IP and MAC addresses. Through extensive simulations in realistic VANET scenarios using the Estinet simulator, we compare our proposal CAAR to classical AR and to another of our proposals that enhances AR for mobile wireless networks, called AR+. In addition, we present a performance evaluation of the behaviour of CAAR, AR and AR+ with unicast traffic of a reporting service for VANETs. Results show that CAAR outperforms the other two solutions in terms of packet losses and furthermore, it does not introduce additional overhead.Postprint (published version

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Building an Intelligent Transport Information Platform for Smart Cities

    Get PDF
    Intelligent Transportation management is a key requirement in the development of Smart Cities. This can be realised with a new technology known as Vehicular Ad hoc Networks or VANETs. VANETs allow us to integrate our transport and communication infrastructures through communication devices deployed along the roads called Roadside Units (RSUs). The RSUs talk to a device in your car called an Onboard Unit (OBU). OBUs can exchange information with RSUs as well as with each other, and because VANETs have been engineered to deliver information quickly and reliably, they can be used in a number of safety-critical areas such as collision avoidance, accident notification and disaster management. This project was about building and evaluating a prototype VANET network on the Middlesex University Hendon Campus and surrounding roads. The information from this VANET Testbed was stored and processed using a Cloud platform at Middlesex University, enabling visual and data analytics to be applied in order to provide an intelligent platform for transport management

    Location-aware service discovery on IPv6 GeoNetworking for VANET

    Get PDF
    Conference is technically co-sponsored by IEEE Communications Society and co-organized by the Technical Sub-Committee on Vehicular Networks and Telematics (VNAT)International audienceService discovery is an essential component for applications in vehicular communication systems. While there have been numerous service discovery protocols dedicated to a local network, mobile ad-hoc networks and the Internet, in vehicular communication systems, applications pose additional requirements; They need to discover services according to geo- graphical position. In this paper, we propose a location-aware service discovery mechanism for Vehicular Ad-hoc NETwork (VANET). The proposed mechanism exploits IPv6 multicast on top of IPv6 GeoNetworking specified by the GeoNet project. Thanks to the GeoBroadcast mechanism, it efficiently propagates service discovery messages to a subset of nodes inside a relevant geographical area with encapsulating IPv6 multicast packets. We implemented the mechanism using CarGeo6, an open source implementation of IPv6 GeoNetworking. Our real field evaluation shows the system can discover services with low latency and low bandwidth usage in VANETs

    SURVEY OF VEHICLE AD-HOC NETWORK

    Get PDF
    The communication is done in between cars that is based on the short range wireless technology. It become safety road and travel comfort using ad-hoc network. We see the different to communication mode in car network. Also we see the Geonetworking with car network. IPv6 is considered as the most appropriate technologies to support communication in VANET thanks to its extended address space, enhanced mobility support, ease of configuration and embedded security

    Distance Cautious IP - A Systematic Approach in VANETS

    Full text link
    VANET is a decentralized network that allows the vehicles to communicate with each other for providingsafety warning, traffic management and driver assistance systems. Vehicular IP in Wireless Access in Vehicular Environments (VIP-WAVE)has characterized the IP configuration for extended andnon-extended IP services, and amobilitymanagement scheme supportedby Proxy Mobile IPv6 over WAVE.As the vehicular networks are formed even in remote areas with inadequate power source, the units have power constraints which are overcome by power control in the proposed system .The objective of the paper is to improve the quality of the network by providing internet accesswith transmit power control along which the distance between the RSU and on-board vehicular units(OBU)is determined i.e., power consumption is reduced when at least distance. Hence the RSU provides Distance Cautious Internet Protocol (DCIP) to the OBU for internet access.This paper analyses the WAVE standard and its support of IP based applications, and proposesDistance Cautious Internet Protocol in WAVE(DCIP-WAVE)
    • …
    corecore