8,727 research outputs found

    Development of boron calibration via hybrid comparator method in prompt gamma activation analysis

    Get PDF
    The prompt gamma activation analysis (PGAA) facility at the Nuclear Engineering Teaching Laboratory at The University of Texas at Austin was utilized to quantify boron concentrations in boron carbide semiconductor films deposited on silicon substrates. Calibration was complicated by the unique and varying sample geometries analyzed. In addition, there was a dearth of solid materials available with quantified boron concentrations having comparable or readily modifiable dimensions to exploit for calibration purposes. Therefore, a novel hybrid comparator method was developed for the quantification of boron utilizing aluminum as an inexpensive and easily machinable reference material. Aluminum samples were manufactured with high tolerances to match the geometry of each sample of interest. Each boron carbide film sample and its congruent aluminum sample were measured in the PGAA system. The measured aluminum responses and relevant nuclear parameters were used to standardize the measurements. A boron standard was created using a procedure derived from a similar approach used by the National Institute of Standards and Technology. Quality control measurements using this standard show that the method provided accuracy to within 5% for boron quantification

    On the calibration of direct-current current transformers

    Get PDF
    Modern commercial direct-current current transformers (DCCT) can measure currents up to the kA range with accuracies better than 1E-5. We discuss here a DCCT calibration method and its implementation with commercial instruments typically employed in low resistance calibration laboratories. The primary current ranges up to 2 kA; in the current range below \SI{100}{\ampere} the calibration uncertainty is better than 3E-7. An example of calibration of a high-performance DCCT specified for primary currents measurement up to 900 A is discussed in detail.Comment: Accepted for publication in IEEE Trans. Instr. Meas. Copyright IEE

    Measurement technology: A compilation

    Get PDF
    Technical information is presented on measurement techniques and instruments, measurement applications for inspection activities, measurement sensors, and data conversion methods. Photographs or diagrams are included for each instrument or method described, and where applicable, patent information is given

    Exploiting smallest error to calibrate non-linearity in SAR ADCs

    Get PDF
    This paper presents a statistics-optimised organisation technique to achieve better element matching in Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) in smart sensor systems. We demonstrate the proposed technique ability to achieve a significant improvement of around 23 dB on Spurious Free Dynamic Range (SFDR) of the ADC than the conventional, testing with a capacitor mismatch σu = 0.2% in a 14 bit SAR ADC system. For the static performance, the max root mean square (rms) value of differential nonlinearity (DNL) reduces from 1.63 to 0.20 LSB and the max rms value of integral nonlinearity (INL) reduces from 2.10 to 0.21 LSB. In addition, it is demonstrated that by applying grouping optimisation and strategy optimisation, the performance boosting on SFDR can be effectively achieved. Such great improvement on the resolution of the ADC only requires an off-line pre-processing digital part

    Dependable reconfigurable multi-sensor poles for security

    Get PDF
    Wireless sensor network poles for security monitoring under harsh environments require a very high dependability as they are safety-critical [1]. An example of a multi-sensor pole is shown. Crucial attribute in these systems for security, especially in harsh environment, is a high robustness and guaranteed availability during lifetime. This environment could include molest. In this paper, two approaches are used which are applied simultaneously but are developed in different projects. \u

    Radiometric Wireless Sensor Network Monitoring of Partial Discharge Sources in Electrical Substations

    Get PDF
    A wireless sensor network (WSN) with the potential to monitor and locate partial discharge (PD) in high-voltage electricity substations using only received signal strength (RSS) is proposed. The advantages of an RSS-based operating principle over more traditional methods (e.g., time-of-arrival and time-difference-of-arrival) are described. Laboratory measurements of PD that emulate the operation of a PD WSN are presented. The hardware architecture of a prototype PD WSN is described and the particular challenges of an RSS-based location approach in an environment with an unknown, and spatially varying, path-loss index are discussed. It is concluded that an RSS-based PD WSN is a plausible solution for the monitoring of insulation integrity in electricity substations

    Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions

    Get PDF
    The paper proposes a new calibration method for parallel manipulators that allows efficient identification of the joint offsets using observations of the manipulator leg parallelism with respect to the base surface. The method employs a simple and low-cost measuring system, which evaluates deviation of the leg location during motions that are assumed to preserve the leg parallelism for the nominal values of the manipulator parameters. Using the measured deviations, the developed algorithm estimates the joint offsets that are treated as the most essential parameters to be identified. The validity of the proposed calibration method and efficiency of the developed numerical algorithms are confirmed by experimental results. The sensitivity of the measurement methods and the calibration accuracy are also studied

    Study of optical techniques for the Ames unitary wind tunnels. Part 4: Model deformation

    Get PDF
    A survey of systems capable of model deformation measurements was conducted. The survey included stereo-cameras, scanners, and digitizers. Moire, holographic, and heterodyne interferometry techniques were also looked at. Stereo-cameras with passive or active targets are currently being deployed for model deformation measurements at NASA Ames and LaRC, Boeing, and ONERA. Scanners and digitizers are widely used in robotics, motion analysis, medicine, etc., and some of the scanner and digitizers can meet the model deformation requirements. Commercial stereo-cameras, scanners, and digitizers are being improved in accuracy, reliability, and ease of operation. A number of new systems are coming onto the market

    Transfer of autocollimator calibration for use with scanning gantry profilometers for accurate determination of surface slope and curvature of state of the art x ray mirrors

    Get PDF
    X ray optics, desired for beamlines at free electron laser and diffraction limited storage ring x ray light sources, must have almost perfect surfaces, capable of delivering light to experiments without significant degradation of brightness and coherence. To accurately characterize such optics at an optical metrology lab, two basic types of surface slope profilometers are used the long trace profilers LTPs and nanometer optical measuring NOM like angular deflectometers, based on electronic autocollimator AC ELCOMAT 3000. The inherent systematic errors of the instrument s optical sensors set the principle limit to their measuring performance. Where autocollimator of a NOM like profiler may be calibrated at a unique dedicated facility, this is for a particular configuration of distance, aperture size, and angular range that does not always match the exact use in a scanning measurement with the profiler. Here we discuss the developed methodology, experimental set up, and numerical methods of transferring the calibration of one reference AC to the scanning AC of the Optical Surface Measuring System OSMS , recently brought to operation at the ALS Xray Optics Laboratory. We show that precision calibration of the OSMS performed in three steps, allows us to provide high confidence and accuracy low spatial frequency metrology and not print into measurements the inherent systematic error of tool in use. With the examples of the OSMS measurements with a state of the art x ray aspherical mirror, available from one of the most advanced vendors of X ray optics, we demonstrate the high efficacy of the developed calibration procedure. The results of our work are important for obtaining high reliability data, needed for sophisticated numerical simulations of beamline performance and optimization of beamline usage of the optics. This work was supported by the U. S. Department of Energy under contract number DE AC02 05CH1123
    corecore