25 research outputs found

    Ground-based synthetic aperture radar (GBSAR) interferometry for deformation monitoring

    Get PDF
    Ph. D ThesisGround-based synthetic aperture radar (GBSAR), together with interferometry, represents a powerful tool for deformation monitoring. GBSAR has inherent flexibility, allowing data to be collected with adjustable temporal resolutions through either continuous or discontinuous mode. The goal of this research is to develop a framework to effectively utilise GBSAR for deformation monitoring in both modes, with the emphasis on accuracy, robustness, and real-time capability. To achieve this goal, advanced Interferometric SAR (InSAR) processing algorithms have been proposed to address existing issues in conventional interferometry for GBSAR deformation monitoring. The proposed interferometric algorithms include a new non-local method for the accurate estimation of coherence and interferometric phase, a new approach to selecting coherent pixels with the aim of maximising the density of selected pixels and optimizing the reliability of time series analysis, and a rigorous model for the correction of atmospheric and repositioning errors. On the basis of these algorithms, two complete interferometric processing chains have been developed: one for continuous and the other for discontinuous GBSAR deformation monitoring. The continuous chain is able to process infinite incoming images in real time and extract the evolution of surface movements through temporally coherent pixels. The discontinuous chain integrates additional automatic coregistration of images and correction of repositioning errors between different campaigns. Successful deformation monitoring applications have been completed, including three continuous (a dune, a bridge, and a coastal cliff) and one discontinuous (a hillside), which have demonstrated the feasibility and effectiveness of the presented algorithms and chains for high-accuracy GBSAR interferometric measurement. Significant deformation signals were detected from the three continuous applications and no deformation from the discontinuous. The achieved results are justified quantitatively via a defined precision indicator for the time series estimation and validated qualitatively via a priori knowledge of these observing sites.China Scholarship Council (CSC), Newcastle Universit

    Using several monitoring techniques to measure the rock mass deformation in the Montserrat Massif

    Full text link
    Montserrat Mountain is located near Barcelona in Catalonia, at the north-east corner of Spain, and its massif is formed by conglomerate interleaved by siltstone/sandstone with steep slopes very prone to rock falls. The increasing visitor's number in the monastery area, reaching 2.4 million per year, has pointed out the risk derived from rock falls for this building area and also for the terrestrial accesses, both roads and rack railway. A risk mitigation plan is currently been applied for 2014-2016 that contains monitoring testing and implementation as a key point. The preliminary results of the pilot tests carried out during 2014 are presented, also profiting from previous sparse experiences and data, and combining 4 monitoring techniques under different conditions of continuity in space and time domains, which are: displacement monitoring with Ground-based Synthetic Aperture Radar and characterization at slope scale, with an extremely non uniform atmospheric phase screen because of the stepped topography and atmosphere stratification; Terrestrial Laser Scanner surveys quantifying frequency for unnoticed activity of small rock falls, and monitoring rock block displacements over 1cm; monitoring of rock joints with a wireless net of sensors; and tentative surveying for singular rocky needles with Total Station

    Landslide monitoring using mobile device and cloud-based photogrammetry

    Get PDF
    PhD ThesisLandslides are one of the most commonly occurring natural disasters that can cause a serious threat to human life and society, in addition to significant economic loss. Investigation and monitoring of landslides are important tasks in geotechnical engineering in order to mitigate the hazards created by such phenomena. However, current geomatics approaches used for precise landslide monitoring are largely inappropriate for initial assessment by an engineer over small areas due to the labourintensive and costly methods often adopted. Therefore, the development of a costeffective landslide monitoring system for real-time on-site investigation is essential to aid initial geotechnical interpretation and assessment. In this research, close-range photogrammetric techniques using imagery from a mobile device camera (e.g. a modern smartphone) were investigated as a low-cost, non-contact monitoring approach to on-site landslide investigation. The developed system was implemented on a mobile platform with cloud computing technology to enable the potential for real-time processing. The system comprised the front-end service of a mobile application controlled by the operator and a back-end service employed for photogrammetric measurement and landslide monitoring analysis. In terms of the backend service, Structure-from-Motion (SfM) photogrammetry was implemented to provide fully-automated processing to offer user-friendliness to non-experts. This was integrated with developed functions that were used to enhance the processing performance and deliver appropriate photogrammetric results for assessing landslide deformations. In order to implement this system with a real-time response, the cloud-based system required data transfer using Internet services via a modern 4G/5G network. Furthermore, the relationship between the number of images and image size was investigated to optimize data processing. The potential of the developed system for monitoring landslides was investigated at two different real-world UK sites, comprising a natural earth-flow landslide and coastal cliff erosion. These investigations demonstrated that the cloud-based photogrammetric measurement system was capable of providing three-dimensional results to subdecimeter-level accuracy. The results of the initial assessments for on-site investigation could be effectively presented on the mobile device through visualisation and/or statistical quantification of the landslide changes at a local-scale.Royal Thai Government and Naresuan University for the scholarship and financial suppor

    Geodetic and Remote-Sensing Sensors for Dam Deformation Monitoring

    Get PDF
    In recent years, the measurement of dam displacements has benefited from a great improvement of existing technology, which has allowed a higher degree of automation. This has led to data collection with an improved temporal and spatial resolution. Robotic total stations and GNSS (Global Navigation Satellite System) techniques, often in an integrated manner, may provide efficient solutions for measuring 3D displacements on precise locations on the outer surfaces of dams. On the other hand, remote-sensing techniques, such as terrestrial laser scanning, ground-based SAR (synthetic aperture radar) and satellite differential interferometric SAR offer the chance to extend the observed region to a large portion of a structure and its surrounding areas, integrating the information that is usually provided in a limited number of in-situ control points. The design and implementation of integrated monitoring systems have been revealed as a strategic solution to analyze different situations in a spatial and temporal context. Research devoted to the optimization of data processing tools has evolved with the aim of improving the accuracy and reliability of the measured deformations. The analysis of the observed data for the interpretation and prediction of dam deformations under external loads has been largely investigated on the basis of purely statistical or deterministic methods. The latter may integrate observation from geodetic, remote-sensing and geotechnical/structural sensors with mechanical models of the dam structure. In this paper, a review of the available technologies for dam deformation monitoring is provided, including those sensors that are already applied in routinary operations and some experimental solutions. The aim was to support people who are working in this field to have a complete view of existing solutions, as well as to understand future directions and trends

    Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain

    Get PDF
    Subsidence related to multiple natural and human-induced processes affects an increasing number of areas worldwide. Although this phenomenon may involve surface deformation with 3D displacement components, negative vertical movement, either progressive or episodic, tends to dominate. Over the last decades, differential SAR interferometry (DInSAR) has become a very useful remote sensing tool for accurately measuring the spatial and temporal evolution of surface displacements over broad areas. This work discusses the main advantages and limitations of addressing active subsidence phenomena by means of DInSAR techniques from an end-user point of view. Special attention is paid to the spatial and temporal resolution, the precision of the measurements, and the usefulness of the data. The presented analysis is focused on DInSAR results exploitation of various ground subsidence phenomena (groundwater withdrawal, soil compaction, mining subsidence, evaporite dissolution subsidence, and volcanic deformation) with different displacement patterns in a selection of subsidence areas in Spain. Finally, a cost comparative study is performed for the different techniques applied.The different research areas included in this paper has been supported by the projects: CGL2005-05500-C02, CGL2008-06426-C01-01/BTE, AYA2 010-17448, IPT-2011-1234-310000, TEC-2008-06764, ACOMP/2010/082, AGL2009-08931/AGR, 2012GA-LC-036, 2003-03-4.3-I-014, CGL2006-05415, BEST-2011/225, CGL2010-16775, TEC2011-28201, 2012GA-LC-021 and the Banting Postdoctoral Fellowship to PJG

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Novel Approaches in Landslide Monitoring and Data Analysis

    Get PDF
    Significant progress has been made in the last few years that has expanded the knowledge of landslide processes. It is, therefore, necessary to summarize, share and disseminate the latest knowledge and expertise. This Special Issue brings together novel research focused on landslide monitoring, modelling and data analysis

    Assessment of landslide susceptibility in Structurally Complex Formations by integration of different A-DInSAR techniques

    Get PDF
    Instability events are recurring phenomena in Southern Italy due to its geological history and tectonic-geomorphological evolution leading to the occurrence of several formations identified as Structurally Complex Formations (SCFs; Esu, 1977) in a territory mainly composed of densely populated areas also in mountainous and hilly regions. SCFs are clay-dominant terrains that, usually, give origin from very-slow to extremely-slow phenomena (Cruden and Varnes, 1996) with a long evolutionary history made up of multiple reactivations that makes difficult their identification, monitoring and susceptibility evaluation. The study has been carried out from point-wise (Bisaccia, Costa della Gaveta and Nerano cases) to wide areas (Palermo province case) where crops out SCFs as the Termini sandstones Formation (CARG, 2011), the Varicoloured Clays of Calaggio Formation (Ciaranfi et al., 1973), the Varicoloured Clays Unit (Mattioni et al., 2006) the Sicilide Unit (Vitale and Ciarcia, 2013 and references therein), the Numidian Flysch (Johansson et al., 1998) and the Corleone Calcarenites (Catalano R. et al., 2002). The aim of this thesis is to produce updated Landslide Inventory Maps and, whenever possible, Landslide Susceptibility Maps following a new approach during the landslide mapping and landslide monitoring stages. The Landslide Inventory Maps have taken into account the combination of geological, geomorphological, and stereoscopic surveys, as well as engineering geological investigations, namely conventional techniques. In addition innovative Advanced-Differential Interferometry Synthetic Aperture Radar (A-DInSAR) techniques have been used: the Coherent Pixels Technique – CPT (Mora et al., 2003; Blanco et al., 2008), the Intermittent Small BAseline Subset – ISBAS (Sowter et al., 2013) and the Ground-Based Synthetic Aperture Radar. Finally, the Weight of Evidence method (van Westen, 1993) has been chosen to generate the Landslide Susceptibility Maps only for the point-wise studies. In the case of Nerano (Province of Naples), the ISBAS analysis on ENVISAT images (for the period 2003-2010) has been carried out and compared with inclinometric and rainfall data. These have revealed several reactivations of a rotational slide + earth flow (Cruden and Varnes, 1996) that involves reworked clay olistostromes and limestone olistoliths inside the Termini sandstones Formation; even in recent years the landslide, despite many engineering works, has given evidence of a continuing activity. The results highlight a very slow movement in the detachment zone (<1 mm/yr), which assumes slightly higher values in the accumulation area (5 mm/yr). The Landslide Susceptibility Map confirms the high levels in the flow track and the accumulation area. In Bisaccia (Province of Avellino), a conglomeratic slab undergoes a Deep Seated Gravitational Slope Deformation (DSGSD; Pasuto and Soldati, 2013 and references therein) due to the bedrock consolidation, made of the Varicoloured Clays of Calaggio Formation. Here the CPT processing on ENVISAT images (covering the period between 2002 and 2010), displays a vertical displacement for the town center, suffering a progressively increasing velocity from the southern (4.2 mm/yr) to the northern (15.5 mm/yr) portion of the slab that localizes four different sectors. The pattern is confirmed from the building damage map. The landslides susceptibility reaches the highest values in the adjacent valleys and at the edges of each sector. Multiple datasets have been employed for the Costa della Gaveta case-study (Province of Potenza), these encompass: ENVISAT, TerraSAR-X and COSMO-SkyMed constellations together with Ground Based Synthetic Aperture Radar (GBSAR). The A-DInSAR data have been compared with stereoscopic analysis and the available rainfall and inclinometric data. The analysis allows for the identification of 16 landslides (complexes and earth flows; Cruden and Varnes, 1996) developed in the Varicoloured Clays Unit that show, according to all the existing instruments, velocities between 1.5 and 30 mm/yr. The western side of Costa della Gaveta slope is the portion which suffers the highest landslides susceptibility levels. In the Province of Palermo (northwestern Sicily) information deriving from A-DInSAR processing, specifically the ISBAS technique, have been focused on three subareas (Piana degli Albanesi, Marineo and Ventimiglia di Sicilia) for a total extension of 182 Km2 where standard A-DInSAR algorithms showed limitations due to the widespread presence of densely vegetated areas. The radar-detected landslides have been validated through field geomorphological mapping and stereoscopic analysis proving to be highly consistent especially with slow phenomena. The outcome has allowed to confirm 152 preexisting landslides, to detect 81 new events and to change 133 previously mapped landslides, modifying their typology, boundary and/or state of activity. The study demonstrates how a better knowledge of landslide development and their cause-effect mechanisms provided by new Earth Observation techniques is useful for Landslide Inventory and Susceptibility Maps. The research project has been carried out at the University of Naples "Federico II", including nine months (September 2013 – May 2014) spent in the United Kingdom, at the British Geological Survey under the supervision of Dr. Francesca Cigna and Dr. Jordan Colm and at the University of Nottingham (Department of Civil Engineering), under the supervision of Dr. Andrew Sowter where the ISBAS technique has been recently developed

    Generic Radar Processing Methods for Monitoring Tasks on Bridge Infrastructure

    Get PDF
    Kritische Verkehrsinfrastrukturen, wie z. B. Brücken, können nur dann sicher betrieben werden, wenn ihr Zustand regelmäßig bewertet wird. Neben visuellen Inspektionen umfasst die Bewertung auch Messungen des Brückenverhaltens auf statische oder dynamische Lasten. Diese Messungen werden in der Regel mit einer Vielzahl von Sensoren durchgeführt, die direkt an der Brücke befestigt sind. Zunehmend werden jedoch auch Fernerkundungssensoren eingesetzt, wie z.B. das bodenbasierte interferometrische Radar (engl.: ground-based interferometric radar - GBR). GBR können aus der Ferne Verschiebungen mit einer Genauigkeit im Submillimeterbereich messen, indem sie eine elektromagnetische Welle aussenden, die von Strukturen an der Unterseite der Brücke reflektiert wird. Im Vergleich zu direkt befestigten Sensoren wird die Installationszeit verkürzt und der normale Betrieb der Brücke wird nicht beeinträchtigt. Vergleichbare Messunsicherheiten lassen sich jedoch nur erreichen, wenn bei der Prozessierung der Messungen bestimmte Herausforderungen berücksichtigt werden. Dabei geht es vor allem um die Entfernung externer Einflüsse wie Störungen des Signals oder Veränderungen atmosphärischer Parameter. Die Messungen werden außerdem durch statischen Clutter und Projektionsfehler beeinflusst, die zu systematischen Abweichungen führen. Statischer Clutter wird mit einer angepassten Kreisschätzung bestimmt, während Projektionsfehler durch die Verwendung mehrerer Sensoren zur Schätzung separater Verschiebungskomponenten vermindert werden. Mit diesen zusätzlichen Prozessierungsschritten erreicht GBR eine ähnliche Unsicherheit wie andere Fernerkundungssensoren, was durch Vergleiche mit Referenzsensoren validiert wird. Verbleibende Unterschiede zu diesen Referenzsensoren lassen sich durch Unsicherheiten bei der Schätzung von Clutter und durch die begrenzte Auflösung einzelner Reflexionen erklären. Die resultierenden Verschiebungsmessungen werden dann zur Schätzung schadensempfindlicher Merkmale wie Eigenfrequenzen und Eigenformen verwendet. Eigenfrequenzen werden bestimmt, indem ein Modell einer gedämpften Sinuskurve für die Schwingung nach einer Fahrzeugüberfahrt geschätzt wird. Mit diesem Ansatz wird jede Fahrzeugüberfahrt separat analysiert, was eine Unterscheidung zwischen verschiedenen Fahrzeugmassen ermöglicht. Außerdem erlaubt die große Anzahl von Frequenzschätzungen eine zuverlässigere Bestimmung des Temperatureinflusses auf die Eigenfrequenzen. Für die Bestimmung der Eigenformen wird ein alternativer Messaufbau erarbeitet. Dieser Aufbau nutzt die flache Unterseite einer Brücke, um das ausgesendete Signal auf einen Reflektor auf dem Boden zu spiegeln. Eine permanente Installation von Reflektoren an der Brückenunterseite ist daher nicht erforderlich, wodurch die Anwendung von GBR auf eine große Anzahl von Brücken erweitert wird. Darüber hinaus kann die Messung nicht durch andere Verschiebungskomponenten beeinflusst werden, was das Auftreten von systematischen Abweichungen verringert. Folglich sind die Eigenformen empfindlicher gegenüber Schäden, da die Unsicherheiten reduziert werden. Das zugrunde liegende Prinzip dieses alternativen Messaufbaus wird wiederum durch Vergleiche mit Referenzsensoren validiert
    corecore