15 research outputs found

    Automatic discrimination between safe and unsafe swallowing using a reputation-based classifier

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Swallowing accelerometry has been suggested as a potential non-invasive tool for bedside dysphagia screening. Various vibratory signal features and complementary measurement modalities have been put forth in the literature for the potential discrimination between safe and unsafe swallowing. To date, automatic classification of swallowing accelerometry has exclusively involved a single-axis of vibration although a second axis is known to contain additional information about the nature of the swallow. Furthermore, the only published attempt at automatic classification in adult patients has been based on a small sample of swallowing vibrations.</p> <p>Methods</p> <p>In this paper, a large corpus of dual-axis accelerometric signals were collected from 30 older adults (aged 65.47 ± 13.4 years, 15 male) referred to videofluoroscopic examination on the suspicion of dysphagia. We invoked a reputation-based classifier combination to automatically categorize the dual-axis accelerometric signals into safe and unsafe swallows, as labeled via videofluoroscopic review. From these participants, a total of 224 swallowing samples were obtained, 164 of which were labeled as unsafe swallows (swallows where the bolus entered the airway) and 60 as safe swallows. Three separate support vector machine (SVM) classifiers and eight different features were selected for classification.</p> <p>Results</p> <p>With selected time, frequency and information theoretic features, the reputation-based algorithm distinguished between safe and unsafe swallowing with promising accuracy (80.48 ± 5.0%), high sensitivity (97.1 ± 2%) and modest specificity (64 ± 8.8%). Interpretation of the most discriminatory features revealed that in general, unsafe swallows had lower mean vibration amplitude and faster autocorrelation decay, suggestive of decreased hyoid excursion and compromised coordination, respectively. Further, owing to its performance-based weighting of component classifiers, the static reputation-based algorithm outperformed the democratic majority voting algorithm on this clinical data set.</p> <p>Conclusion</p> <p>Given its computational efficiency and high sensitivity, reputation-based classification of dual-axis accelerometry ought to be considered in future developments of a point-of-care swallow assessment where clinical informatics are desired.</p

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    Heterogeneous recognition of bioacoustic signals for human-machine interfaces

    No full text
    Human-machine interfaces (HMI) provide a communication pathway between man and machine. Not only do they augment existing pathways, they can substitute or even bypass these pathways where functional motor loss prevents the use of standard interfaces. This is especially important for individuals who rely on assistive technology in their everyday life. By utilising bioacoustic activity, it can lead to an assistive HMI concept which is unobtrusive, minimally disruptive and cosmetically appealing to the user. However, due to the complexity of the signals it remains relatively underexplored in the HMI field. This thesis investigates extracting and decoding volition from bioacoustic activity with the aim of generating real-time commands. The developed framework is a systemisation of various processing blocks enabling the mapping of continuous signals into M discrete classes. Class independent extraction efficiently detects and segments the continuous signals while class-specific extraction exemplifies each pattern set using a novel template creation process stable to permutations of the data set. These templates are utilised by a generalised single channel discrimination model, whereby each signal is template aligned prior to classification. The real-time decoding subsystem uses a multichannel heterogeneous ensemble architecture which fuses the output from a diverse set of these individual discrimination models. This enhances the classification performance by elevating both the sensitivity and specificity, with the increased specificity due to a natural rejection capacity based on a non-parametric majority vote. Such a strategy is useful when analysing signals which have diverse characteristics, false positives are prevalent and have strong consequences, and when there is limited training data available. The framework has been developed with generality in mind with wide applicability to a broad spectrum of biosignals. The processing system has been demonstrated on real-time decoding of tongue-movement ear pressure signals using both single and dual channel setups. This has included in-depth evaluation of these methods in both offline and online scenarios. During online evaluation, a stimulus based test methodology was devised, while representative interference was used to contaminate the decoding process in a relevant and real fashion. The results of this research provide a strong case for the utility of such techniques in real world applications of human-machine communication using impulsive bioacoustic signals and biosignals in general

    Advanced Augmentative and Alternative Communication System Based in Physiological Control

    Full text link
    Dyskinetic Cerebral Palsy (DCP) is mainly characterized by alterations in muscle tone and involuntary movements. Therefore, these people present with difficulties in coordination and movement control, which makes walking difficult and affects their posture when seated. Additionally, their cognitive performance varies between being completely normal and severe mental retardation. People with DCP were selected as the objective of this thesis due to their multiple and complex limitations (speech problems and motor control) and because their capabilities have a great margin for improvement thanks to physiological control systems. Given their communication difficulties, some people with DCP have good motor con-trol and can communicate with written language. However, most have difficulty using Augmentative and Alternative Communication (AAC) systems. People with DCP gen-erally use concept boards to indicate the idea they want to communicate. However, most communication solutions available today are based on proprietary software that makes it difficult to customize the concept board and this type of control system. This is the motivation behind this thesis, with the aim of creating an interface with characteristics, able to be adapted to the user needs and limitations. Thus, this thesis proposes an Augmentative and Alternative Communication System for people with DCP based on physiological control. In addition, an innovative system for direct con-trol of concept boards with EMG is proposed. This control system is based on a physi-cal model that reproduces the muscular mechanical response (stiffness, inertia and viscosity). It allows for a selection of elements thanks to small pulses of EMG signal with sensors on a muscle with motor control. Its main advantage is the possibility of correcting errors during selection associated with uncontrolled muscle impulses, avoid-ing sustained muscle effort and thus reduced fatigue.La Parálisis Cerebral de tipo Discinésica (DCP) se caracteriza principalmente por las alteraciones del tono muscular y los movimientos involuntarios. Por ello, estos pacientes presentan dificultades en la coordinación y en el control de movimientos, lo cual les dificulta el caminar y afecta su postura cuando están sentados. Cabe resaltar que la capacidad cognitiva de las personas con DCP puede variar desde completamente normal, hasta un retraso mental severo. Las personas con DCP han sido seleccionadas como objetivo de esta tesis ya el margen de mejora de sus capacidades es amplio gracias a sistemas de control fisiológico, debido a sus múltiples y complejas limitaciones (problemas de habla y control motor). Debido a sus dificultades de comunicación, algunas personas con DCP se pueden comunicar con lenguaje escrito, siempre y cuando tenga un buen control motor. Sin embargo, la mayoría tienen dificultades para usar sistemas de Comunicación Aumentativos y Alternativos (AAC). De hecho, las personas con DCP utilizan generalmente tableros de conceptos para indicar la idea que quieren transmitir. Sin embargo, la mayoría las soluciones de comunicación disponibles en la actualidad están basadas en software propietario que hacen difícil la personalización del tablero de conceptos y el tipo de sistema de control. Es aquí donde surge esta tesis, con el objetivo de crear una interfaz con esas características, capaz de adaptarse a las necesidades y limitaciones del usuario. De esta forma, esta tesis propone un sistema de comunicación aumentativo y alternativo para personas con DCP basado en control fisiológico. Además, se propone un Sistema innovador de control directo sobre tableros de conceptos basado en EMG. Este Sistema de control se basa en un modelo físico que reproduce la respuesta mecánica muscular (basado en parámetros como Rigidez, Inercia y Viscosidad), permitiendo la selección de elementos gracias a pequeños pulsos de señal EMG con sensores sobre un músculo con control motor. Sus principales ventajas son la posibilidad de corregir errores durante la selección asociado a los impulsos musculares no controlados, evitar el esfuerzo muscular mantenido para alcanzar un nivel y reducir la fatiga.La Paràlisi Cerebral de tipus Discinèsica (DCP) es caracteritza principalment per les alteracions del to muscular i els moviments involuntaris. Per açò, aquests pacients presenten dificultats en la coordinació i en el control de moviments, la qual cosa els dificulta el caminar i afecta la seua postura quan estan asseguts. Cal ressaltar que la capacitat cognitiva de les persones amb DCP pot variar des de completament normal, fins a un retard mental sever. Les persones amb DCP han sigut seleccionades com a objectiu d'aquesta tesi ja el marge de millora de les seues capacitats és ampli gràcies a sistemes de control fisiològic, a causa dels seus múltiples i complexes limitacions (problemes de parla i control motor). A causa de les seues dificultats de comunicació, algunes persones amb DCP es poden comunicar amb llenguatge escrit, sempre que tinga un bon control motor. No obstant açò, la majoria tenen dificultats per a usar sistemes de Comunicació Augmentatius i Alternatius (AAC). De fet, les persones amb DCP utilitzen generalment taulers de conceptes per a indicar la idea que volen transmetre. No obstant açò, la majoria les solucions de comunicació disponibles en l'actualitat estan basades en programari propietari que fan difícil la personalització del tauler de conceptes i el tipus de sistema de control. És ací on sorgeix aquesta tesi, amb l'objectiu de crear una interfície amb aqueixes característiques, capaç d'adaptar-se a les necessitats i limitacions de l'usuari. D'aquesta forma, aquesta tesi proposa un sistema de comunicació augmentatiu i alternatiu per a persones amb DCP basat en control fisiològic. A més, es proposa un sistema innovador de control directe sobre taulers de conceptes basat en EMG. Aquest sistema de control es basa en un model físic que reprodueix la resposta mecànica muscular (basat en paràmetres com a Rigidesa, Inèrcia i Viscositat), permetent la selecció d'elements gràcies a xicotets polsos de senyal EMG amb sensors sobre un múscul amb control motor. Els seus principals avantatges són la possibilitat de corregir errors durant la selecció associat als impulsos musculars no controlats, evitar l'esforç muscular mantingut per a aconseguir un nivell i reduir la fatiga.Díaz Pineda, JA. (2017). Advanced Augmentative and Alternative Communication System Based in Physiological Control [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90418TESI

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare
    corecore