177 research outputs found

    Improved cuckoo search based neural network learning algorithms for data classification

    Get PDF
    Artificial Neural Networks (ANN) techniques, mostly Back-Propagation Neural Network (BPNN) algorithm has been used as a tool for recognizing a mapping function among a known set of input and output examples. These networks can be trained with gradient descent back propagation. The algorithm is not definite in finding the global minimum of the error function since gradient descent may get stuck in local minima, where it may stay indefinitely. Among the conventional methods, some researchers prefer Levenberg-Marquardt (LM) because of its convergence speed and performance. On the other hand, LM algorithms which are derivative based algorithms still face a risk of getting stuck in local minima. Recently, a novel meta-heuristic search technique called cuckoo search (CS) has gained a great deal of attention from researchers due to its efficient convergence towards optimal solution. But Cuckoo search is prone to less optimal solution during exploration and exploitation process due to large step lengths taken by CS due to Levy flight. It can also be used to improve the balance between exploration and exploitation of CS algorithm, and to increase the chances of the egg’s survival. This research proposed an improved CS called hybrid Accelerated Cuckoo Particle Swarm Optimization algorithm (HACPSO) with Accelerated particle Swarm Optimization (APSO) algorithm. In the proposed HACPSO algorithm, initially accelerated particle swarm optimization (APSO) algorithm searches within the search space and finds the best sub-search space, and then the CS selects the best nest by traversing the sub-search space. This exploration and exploitation method followed in the proposed HACPSO algorithm makes it to converge to global optima with more efficiency than the original Cuckoo Search (CS) algorithm. Finally, the proposed CS hybrid variants such as; HACPSO, HACPSO-BP, HACPSO-LM, CSBP, CSLM, CSERN, and CSLMERN are evaluated and compared with conventional Back propagation Neural Network (BPNN), Artificial Bee Colony Neural Network (ABCNN), Artificial Bee Colony Back propagation algorithm (ABC-BP), and Artificial Bee Colony Levenberg-Marquardt algorithm (ABC-LM). Specifically, 6 benchmark classification datasets are used for training the hybrid Artificial Neural Network algorithms. Overall from the simulation results, it is realized that the proposed CS based NN algorithms performs better than all other proposed and conventional models in terms of CPU Time, MSE, SD and accuracy

    Research on Precipitation Prediction Model Based on Extreme Learning Machine Ensemble

    Get PDF
    Precipitation is a significant index to measure the degree of drought and flood in a region, which directly reflects the local natural changes and ecological environment. It is very important to grasp the change characteristics and law of precipitation accurately for effectively reducing disaster loss and maintaining the stable development of a social economy. In order to accurately predict precipitation, a new precipitation prediction model based on extreme learning machine ensemble (ELME) is proposed. The integrated model is based on the extreme learning machine (ELM) with different kernel functions and supporting parameters, and the submodel with the minimum root mean square error (RMSE) is found to fit the test data. Due to the complex mechanism and factors affecting precipitation change, the data have strong uncertainty and significant nonlinear variation characteristics. The mean generating function (MGF) is used to generate the continuation factor matrix, and the principal component analysis technique is employed to reduce the dimension of the continuation matrix, and the effective data features are extracted. Finally, the ELME prediction model is established by using the precipitation data of Liuzhou city from 1951 to 2021 in June, July and August, and a comparative experiment is carried out by using ELM, long-term and short-term memory neural network (LSTM) and back propagation neural network based on genetic algorithm (GA-BP). The experimental results show that the prediction accuracy of the proposed method is significantly higher than that of other models, and it has high stability and reliability, which provides a reliable method for precipitation prediction

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Hybridizing five neural-metaheuristic paradigms to predict the pillar stress in bord and pillar method

    Get PDF
    Pillar stability is an important condition for safe work in room-and-pillar mines. The instability of pillars will lead to large-scale collapse hazards, and the accurate estimation of induced stresses at different positions in the pillar is helpful for pillar design and guaranteeing pillar stability. There are many modeling methods to design pillars and evaluate their stability, including empirical and numerical method. However, empirical methods are difficult to be applied to places other than the original environmental characteristics, and numerical methods often simplify the boundary conditions and material properties, which cannot guarantee the stability of the design. Currently, machine learning (ML) algorithms have been successfully applied to pillar stability assessment with higher accuracy. Thus, the study adopted a back-propagation neural network (BPNN) and five elements including the sparrow search algorithm (SSA), gray wolf optimizer (GWO), butterfly optimization algorithm (BOA), tunicate swarm algorithm (TSA), and multi-verse optimizer (MVO). Combining metaheuristic algorithms, five hybrid models were developed to predict the induced stress within the pillar. The weight and threshold of the BPNN model are optimized by metaheuristic algorithms, in which the mean absolute error (MAE) is utilized as the fitness function. A database containing 149 data samples was established, where the input variables were the angle of goafline (A), depth of the working coal seam (H), specific gravity (G), distance of the point from the center of the pillar (C), and distance of the point from goafline (D), and the output variable was the induced stress. Furthermore, the predictive performance of the proposed model is evaluated by five metrics, namely coefficient of determination (R2), root mean squared error (RMSE), variance accounted for (VAF), mean absolute error (MAE), and mean absolute percentage error (MAPE). The results showed that the five hybrid models developed have good prediction performance, especially the GWO-BPNN model performed the best (Training set: R2 = 0.9991, RMSE = 0.1535, VAF = 99.91, MAE = 0.0884, MAPE = 0.6107; Test set: R2 = 0.9983, RMSE = 0.1783, VAF = 99.83, MAE = 0.1230, MAPE = 0.9253). Copyright © 2023 Zhou, Chen, Chen, Khandelwal, Monjezi and Peng

    Hyperspectral prediction of pigment content in tomato leaves based on logistic-optimized sparrow search algorithm and back propagation neural network

    Get PDF
    Leaf pigment content can reflect the nutrient elements content of the cultivation medium indirectly. To rapidly and accurately predict the pigment content of tomato leaves, chlorophyll a, chlorophyll b, chlorophyll and carotenoid were extracted from leaves of tomato seedlings cultured at different nitrogen concentrations. The visible/near-infrared(VIS/NIR) hyperspectral imaging (HSI) non-destructive measurement technology, 430-900 nm and 950-1650 nm, with total variables of 794, was used to obtain the reflection spectra of leaves. An improved strategy of the sparrow search algorithm (SSA) based on Logistic chaotic mapping was proposed and optimized the back propagation (BP) neural network to predict the pigment content of leaves. Different pretreatment methods were used to effectively improve the prediction accuracy of the model. The results showed that when the nitrogen concentration in the nutrient solution was 302.84 mg·L-1, the pigment content of leaves reached the maximum. Meanwhile, the inhibition effect of high concentration was much stronger than that of low concentration. To address the problem that the SSA is prone to get in premature convergence due to the reduction of population diversity at the end of the iteration, the initialization of the SSA population by Logistic chaotic mapping improves the initial solution quality, convergence speed and search capacity. The root mean squared error (RMSE), coefficient of determination (R2) and relative percent deviation (RPD) of chlorophyll a were 0.77, 0.77 and 2.08, respectively. The RMSE, R2 and RPD of chlorophyll b were 0.30, 0.66 and 1.71, respectively. The RMSE, R2 and RPD of chlorophyll were 0.88, 0.81 and 2.28, respectively. The RMSE, R2 and RPD of carotenoid were 0.14, 0.75 and 2.00, respectively. The HSI technology combined with machine learning algorithms can achieve rapid and accurate prediction of crop physiological information, providing data support for the precise management of fertilization in facility agriculture, which is conducive to improving the quality and output of tomatoes

    An improved data classification framework based on fractional particle swarm optimization

    Get PDF
    Particle Swarm Optimization (PSO) is a population based stochastic optimization technique which consist of particles that move collectively in iterations to search for the most optimum solutions. However, conventional PSO is prone to lack of convergence and even stagnation in complex high dimensional-search problems with multiple local optima. Therefore, this research proposed an improved Mutually-Optimized Fractional PSO (MOFPSO) algorithm based on fractional derivatives and small step lengths to ensure convergence to global optima by supplying a fine balance between exploration and exploitation. The proposed algorithm is tested and verified for optimization performance comparison on ten benchmark functions against six existing established algorithms in terms of Mean of Error and Standard Deviation values. The proposed MOFPSO algorithm demonstrated lowest Mean of Error values during the optimization on all benchmark functions through all 30 runs (Ackley = 0.2, Rosenbrock = 0.2, Bohachevsky = 9.36E-06, Easom = -0.95, Griewank = 0.01, Rastrigin = 2.5E-03, Schaffer = 1.31E-06, Schwefel 1.2 = 3.2E-05, Sphere = 8.36E-03, Step = 0). Furthermore, the proposed MOFPSO algorithm is hybridized with Back-Propagation (BP), Elman Recurrent Neural Networks (RNN) and Levenberg-Marquardt (LM) Artificial Neural Networks (ANNs) to propose an enhanced data classification framework, especially for data classification applications. The proposed classification framework is then evaluated for classification accuracy, computational time and Mean Squared Error on five benchmark datasets against seven existing techniques. It can be concluded from the simulation results that the proposed MOFPSO-ERNN classification algorithm demonstrated good classification performance in terms of classification accuracy (Breast Cancer = 99.01%, EEG = 99.99%, PIMA Indian Diabetes = 99.37%, Iris = 99.6%, Thyroid = 99.88%) as compared to the existing hybrid classification techniques. Hence, the proposed technique can be employed to improve the overall classification accuracy and reduce the computational time in data classification applications

    A hybrid data driven framework considering feature extraction for battery state of health estimation and remaining useful life prediction.

    Get PDF
    Battery life prediction is of great significance to the safe operation, and the maintenance costs are reduced. This paper proposed a hybrid framework considering feature extraction to solve the problem of data backward, large sample data and uneven distribution of high-dimensional feature space, then to achieve a more accurate and stable prediction performance. By feature extraction, the measured data can be directly fed into the life prediction model. The hybrid framework combines variational mode decomposition, the multi-kernel support vector regression model and the improved sparrow search algorithm. Better parameters of the estimation model are obtained by introducing elite chaotic opposition-learning strategy and adaptive weights to optimize the sparrow search algorithm. The comparison is conducted by dataset from National Aeronautics and Space Administration, which shows that the proposed framework has a more accurate and stable prediction performance

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy
    • …
    corecore