13,827 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Joint Computation Offloading and Prioritized Scheduling in Mobile Edge Computing

    Get PDF
    With the rapid development of smart phones, enormous amounts of data are generated and usually require intensive and real-time computation. Nevertheless, quality of service (QoS) is hardly to be met due to the tension between resourcelimited (battery, CPU power) devices and computation-intensive applications. Mobileedge computing (MEC) emerging as a promising technique can be used to copy with stringent requirements from mobile applications. By offloading computationally intensive workloads to edge server and applying efficient task scheduling, energy cost of mobiles could be significantly reduced and therefore greatly improve QoS, e.g., latency. This paper proposes a joint computation offloading and prioritized task scheduling scheme in a multi-user mobile-edge computing system. We investigate an energy minimizing task offloading strategy in mobile devices and develop an effective priority-based task scheduling algorithm with edge server. The execution time, energy consumption, execution cost, and bonus score against both the task data sizes and latency requirement is adopted as the performance metric. Performance evaluation results show that, the proposed algorithm significantly reduce task completion time, edge server VM usage cost, and improve QoS in terms of bonus score. Moreover, dynamic prioritized task scheduling is also discussed herein, results show dynamic thresholds setting realizes the optimal task scheduling. We believe that this work is significant to the emerging mobile-edge computing paradigm, and can be applied to other Internet of Things (IoT)-Edge applications
    corecore