16,961 research outputs found

    A Contextual Reinforcement Learning Approach for Electricity Consumption Forecasting in Buildings

    Get PDF
    The energy management of buildings plays a vital role in the energy sector. With that in mind, and targeting an accurate forecast of electricity consumption, in the present paper is aimed to provide decision on the best prediction algorithm for each context. It may also increase energy usage related with renewables. In this way, the identification of different contexts is an advantage that may improve prediction accuracy. This paper proposes an innovative approach where a decision tree is used to identify different contexts in energy patterns. One week of five-minutes data sampling is used to test the proposed methodology. Each context is evaluated with a decision criterion based on reinforcement learning to find the best suitable forecasting algorithm. Two forecasting models are approached in this paper, based on K-Nearest Neighbor and Artificial Neural Networks, to illustrate the application of the proposed methodology. The reinforcement learning criterion consists of using the Multiarmed Bandit algorithm. The obtained results validate the adequacy of the proposed methodology in two case-studies: building; and industry.This article is a result of the project REal-Time support Infrastructure and Energy management for Intelligent carbon-Neutral smArt cities (RETINA) (NORTE-01-0145-FEDER-000062), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and grant CEECIND/02887/2017. The authors acknowledge the work facilities and equipment provided by the Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development (GECAD) research center (UIDB/00760/2020) to the project team.info:eu-repo/semantics/publishedVersio

    Energy demand prediction for the implementation of an energy tariff emulator to trigger demand response in buildings

    Get PDF
    Buildings are key actors of the electrical gird. As such they have an important role to play in grid stabilization, especially in a context where renewable energies are mandated to become an increasingly important part of the energy mix. Demand response provides a mechanism to reduce or displace electrical demand to better match electrical production. Buildings can be a pool of flexibility for the grid to operate more efficiently. One of the ways to obtain flexibility from building managers and building users is the introduction of variable energy prices which evolve depending on the expected load and energy generation. In the proposed scenario, the wholesale energy price of electricity, a load prediction, and the elasticity of consumers are used by an energy tariff emulator to predict prices to trigger end user flexibility. In this paper, a cluster analysis to classify users is performed and an aggregated energy prediction is realised using Random Forest machine learning algorithm.This paper is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 768614. This paper reflects only the author´s views and neither the Agency nor the Commission are responsible for any use that may be made of the information contained therein

    Learning Agent for a Heat-Pump Thermostat With a Set-Back Strategy Using Model-Free Reinforcement Learning

    Full text link
    The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an alternative to a constant set-point strategy, this paper proposes a learning agent for a thermostat with a set-back strategy. This set-back strategy relaxes the set-point temperature during convenient moments, e.g. when the occupants are not at home. Finding an optimal set-back strategy requires solving a sequential decision-making process under uncertainty, which presents two challenges. A first challenge is that for most residential buildings a description of the thermal characteristics of the building is unavailable and challenging to obtain. A second challenge is that the relevant information on the state, i.e. the building envelope, cannot be measured by the learning agent. In order to overcome these two challenges, our paper proposes an auto-encoder coupled with a batch reinforcement learning technique. The proposed approach is validated for two building types with different thermal characteristics for heating in the winter and cooling in the summer. The simulation results indicate that the proposed learning agent can reduce the energy consumption by 4-9% during 100 winter days and by 9-11% during 80 summer days compared to the conventional constant set-point strategyComment: Submitted to Energies - MDPI.co
    • …
    corecore