1,828 research outputs found

    Entangled cloud storage

    Get PDF
    Entangled cloud storage (Aspnes et al., ESORICS 2004) enables a set of clients to “entangle” their files into a single clew to be stored by a (potentially malicious) cloud provider. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files encoded in the clew. A clew keeps the files in it private but still lets each client recover his own data by interacting with the cloud provider; no cooperation from other clients is needed. At the same time, the cloud provider is discouraged from altering or overwriting any significant part of the clew as this will imply that none of the clients can recover their files. We put forward the first simulation-based security definition for entangled cloud storage, in the framework of universal composability (Canetti, 2001). We then construct a protocol satisfying our security definition, relying on an entangled encoding scheme based on privacy-preserving polynomial interpolation; entangled encodings were originally proposed by Aspnes et al. as useful tools for the purpose of data entanglement. As a contribution of independent interest we revisit the security notions for entangled encodings, putting forward stronger definitions than previous work (that for instance did not consider collusion between clients and the cloud provider). Protocols for entangled cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not modify or delete their data illegitimately. Current solutions, e.g., based on Provable Data Possession and Proof of Retrievability, require the server to be challenged regularly to provide evidence that the clients’ files are stored at a given time. Entangled cloud storage provides an alternative approach where any single client operates implicitly on behalf of all others, i.e., as long as one client's files are intact, the entire remote database continues to be safe and unblemishe

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    A Practical Searchable Symmetric Encryption Scheme for Smart Grid Data

    Full text link
    Outsourcing data storage to the remote cloud can be an economical solution to enhance data management in the smart grid ecosystem. To protect the privacy of data, the utility company may choose to encrypt the data before uploading them to the cloud. However, while encryption provides confidentiality to data, it also sacrifices the data owners' ability to query a special segment in their data. Searchable symmetric encryption is a technology that enables users to store documents in ciphertext form while keeping the functionality to search keywords in the documents. However, most state-of-the-art SSE algorithms are only focusing on general document storage, which may become unsuitable for smart grid applications. In this paper, we propose a simple, practical SSE scheme that aims to protect the privacy of data generated in the smart grid. Our scheme achieves high space complexity with small information disclosure that was acceptable for practical smart grid application. We also implement a prototype over the statistical data of advanced meter infrastructure to show the effectiveness of our approach
    • …
    corecore