53,418 research outputs found

    Environment capturing with Microsoft Kinect

    Get PDF

    Appearance-free Tripartite Matching for Multiple Object Tracking

    Full text link
    Multiple Object Tracking (MOT) detects the trajectories of multiple objects given an input video. It has become more and more important for various research and industry areas, such as cell tracking for biomedical research and human tracking in video surveillance. Most existing algorithms depend on the uniqueness of the object's appearance, and the dominating bipartite matching scheme ignores the speed smoothness. Although several methods have incorporated the velocity smoothness for tracking, they either fail to pursue global smooth velocity or are often trapped in local optimums. We focus on the general MOT problem regardless of the appearance and propose an appearance-free tripartite matching to avoid the irregular velocity problem of the bipartite matching. The tripartite matching is formulated as maximizing the likelihood of the state vectors constituted of the position and velocity of objects, which results in a chain-dependent structure. We resort to the dynamic programming algorithm to find such a maximum likelihood estimate. To overcome the high computational cost induced by the vast search space of dynamic programming when many objects are to be tracked, we decompose the space by the number of disappearing objects and propose a reduced-space approach by truncating the decomposition. Extensive simulations have shown the superiority and efficiency of our proposed method, and the comparisons with top methods on Cell Tracking Challenge also demonstrate our competence. We also applied our method to track the motion of natural killer cells around tumor cells in a cancer study.\footnote{The source code is available on \url{https://github.com/szcf-weiya/TriMatchMOT}Comment: 36 pages, 14 figure

    Background Subtraction in Real Applications: Challenges, Current Models and Future Directions

    Full text link
    Computer vision applications based on videos often require the detection of moving objects in their first step. Background subtraction is then applied in order to separate the background and the foreground. In literature, background subtraction is surely among the most investigated field in computer vision providing a big amount of publications. Most of them concern the application of mathematical and machine learning models to be more robust to the challenges met in videos. However, the ultimate goal is that the background subtraction methods developed in research could be employed in real applications like traffic surveillance. But looking at the literature, we can remark that there is often a gap between the current methods used in real applications and the current methods in fundamental research. In addition, the videos evaluated in large-scale datasets are not exhaustive in the way that they only covered a part of the complete spectrum of the challenges met in real applications. In this context, we attempt to provide the most exhaustive survey as possible on real applications that used background subtraction in order to identify the real challenges met in practice, the current used background models and to provide future directions. Thus, challenges are investigated in terms of camera, foreground objects and environments. In addition, we identify the background models that are effectively used in these applications in order to find potential usable recent background models in terms of robustness, time and memory requirements.Comment: Submitted to Computer Science Revie

    Multiple Object Tracking: A Literature Review

    Full text link
    Multiple Object Tracking (MOT) is an important computer vision problem which has gained increasing attention due to its academic and commercial potential. Although different kinds of approaches have been proposed to tackle this problem, it still remains challenging due to factors like abrupt appearance changes and severe object occlusions. In this work, we contribute the first comprehensive and most recent review on this problem. We inspect the recent advances in various aspects and propose some interesting directions for future research. To the best of our knowledge, there has not been any extensive review on this topic in the community. We endeavor to provide a thorough review on the development of this problem in recent decades. The main contributions of this review are fourfold: 1) Key aspects in a multiple object tracking system, including formulation, categorization, key principles, evaluation of an MOT are discussed. 2) Instead of enumerating individual works, we discuss existing approaches according to various aspects, in each of which methods are divided into different groups and each group is discussed in detail for the principles, advances and drawbacks. 3) We examine experiments of existing publications and summarize results on popular datasets to provide quantitative comparisons. We also point to some interesting discoveries by analyzing these results. 4) We provide a discussion about issues of MOT research, as well as some interesting directions which could possibly become potential research effort in the future

    A Survey on Content-Aware Video Analysis for Sports

    Full text link
    Sports data analysis is becoming increasingly large-scale, diversified, and shared, but difficulty persists in rapidly accessing the most crucial information. Previous surveys have focused on the methodologies of sports video analysis from the spatiotemporal viewpoint instead of a content-based viewpoint, and few of these studies have considered semantics. This study develops a deeper interpretation of content-aware sports video analysis by examining the insight offered by research into the structure of content under different scenarios. On the basis of this insight, we provide an overview of the themes particularly relevant to the research on content-aware systems for broadcast sports. Specifically, we focus on the video content analysis techniques applied in sportscasts over the past decade from the perspectives of fundamentals and general review, a content hierarchical model, and trends and challenges. Content-aware analysis methods are discussed with respect to object-, event-, and context-oriented groups. In each group, the gap between sensation and content excitement must be bridged using proper strategies. In this regard, a content-aware approach is required to determine user demands. Finally, the paper summarizes the future trends and challenges for sports video analysis. We believe that our findings can advance the field of research on content-aware video analysis for broadcast sports.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    All Weather Perception: Joint Data Association, Tracking, and Classification for Autonomous Ground Vehicles

    Full text link
    A novel probabilistic perception algorithm is presented as a real-time joint solution to data association, object tracking, and object classification for an autonomous ground vehicle in all-weather conditions. The presented algorithm extends a Rao-Blackwellized Particle Filter originally built with a particle filter for data association and a Kalman filter for multi-object tracking (Miller et al. 2011a) to now also include multiple model tracking for classification. Additionally a state-of-the-art vision detection algorithm that includes heading information for autonomous ground vehicle (AGV) applications was implemented. Cornell's AGV from the DARPA Urban Challenge was upgraded and used to experimentally examine if and how state-of-the-art vision algorithms can complement or replace lidar and radar sensors. Sensor and algorithm performance in adverse weather and lighting conditions is tested. Experimental evaluation demonstrates robust all-weather data association, tracking, and classification where camera, lidar, and radar sensors complement each other inside the joint probabilistic perception algorithm.Comment: 35 pages, 21 figures, 14 table

    Temporal Dynamic Appearance Modeling for Online Multi-Person Tracking

    Full text link
    Robust online multi-person tracking requires the correct associations of online detection responses with existing trajectories. We address this problem by developing a novel appearance modeling approach to provide accurate appearance affinities to guide data association. In contrast to most existing algorithms that only consider the spatial structure of human appearances, we exploit the temporal dynamic characteristics within temporal appearance sequences to discriminate different persons. The temporal dynamic makes a sufficient complement to the spatial structure of varying appearances in the feature space, which significantly improves the affinity measurement between trajectories and detections. We propose a feature selection algorithm to describe the appearance variations with mid-level semantic features, and demonstrate its usefulness in terms of temporal dynamic appearance modeling. Moreover, the appearance model is learned incrementally by alternatively evaluating newly-observed appearances and adjusting the model parameters to be suitable for online tracking. Reliable tracking of multiple persons in complex scenes is achieved by incorporating the learned model into an online tracking-by-detection framework. Our experiments on the challenging benchmark MOTChallenge 2015 demonstrate that our method outperforms the state-of-the-art multi-person tracking algorithms

    Detection, Recognition and Tracking of Moving Objects from Real-time Video via SP Theory of Intelligence and Species Inspired PSO

    Full text link
    In this paper, we address the basic problem of recognizing moving objects in video images using SP Theory of Intelligence. The concept of SP Theory of Intelligence which is a framework of artificial intelligence, was first introduced by Gerard J Wolff, where S stands for Simplicity and P stands for Power. Using the concept of multiple alignment, we detect and recognize object of our interest in video frames with multilevel hierarchical parts and subparts, based on polythetic categories. We track the recognized objects using the species based Particle Swarm Optimization (PSO). First, we extract the multiple alignment of our object of interest from training images. In order to recognize accurately and handle occlusion, we use the polythetic concepts on raw data line to omit the redundant noise via searching for best alignment representing the features from the extracted alignments. We recognize the domain of interest from the video scenes in form of wide variety of multiple alignments to handle scene variability. Unsupervised learning is done in the SP model following the DONSVIC principle and natural structures are discovered via information compression and pattern analysis. After successful recognition of objects, we use species based PSO algorithm as the alignments of our object of interest is analogues to observation likelihood and fitness ability of species. Subsequently, we analyze the competition and repulsion among species with annealed Gaussian based PSO. We have tested our algorithms on David, Walking2, FaceOcc1, Jogging and Dudek, obtaining very satisfactory and competitive results

    FlightGoggles: A Modular Framework for Photorealistic Camera, Exteroceptive Sensor, and Dynamics Simulation

    Full text link
    FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s). While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex extrinsic dynamics are generated organically through the natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest.Comment: Initial version appeared at IROS 2019. Supplementary material can be found at https://flightgoggles.mit.edu. Revision includes description of new FlightGoggles features, such as a photogrammetric model of the MIT Stata Center, new rendering settings, and a Python AP

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • …
    corecore