18,502 research outputs found

    Investigation of the Effect of Biodiesel Blends on Fuel Injection Pumps based on Vibration and Pressure Measurements

    Get PDF
    Amongst alternative fuels for diesel-engine application, biodiesel is very attractive because it is biodegradable, an environmentally-friendly and sustainable source that can meet future energy demands. However, there are few published studies of the impact of biodiesel fuel and its blends on fuel injection pumps (FIPs). This study will investigate the influence of biodiesels derived from waste cooking oils with incremental blends of B10, B20, B30, B40 and B100. The FIP in this study is a rotary type attached to a four-cylinder, four-stroke direct injection, turbocharged diesel engine. Vibration and pressure measurements were made on the FIP. The results show the peak pressure close to the pump increases slightly the higher the proportion of biodiesel because of increased viscosity, density and bulk modulus of the fuel. Low frequency vibration increased as the proportion of biodiesel increased. These results demonstrate an increase in dynamic load on the pump components. However, high frequency vibration levels are lowest for the blends B10, B20 and B30, which may be helpful for improving the service life of the delivery

    Variable-camber systems integration and operational performance of the AFTI/F-111 mission adaptive wing

    Get PDF
    The advanced fighter technology integration, the AFTI/F-111 aircraft, is a preproduction F-111A testbed research airplane that was fitted with a smooth variable-camber mission adaptive wing. The camber was positioned and controlled by flexing the upper skins through rotary actuators and linkages driven by power drive units. The wing camber and control system are described. The measured servoactuator frequency responses are presented along with analytical predictions derived from the integrated characteristics of the control elements. A mission adaptive wing system chronology is used to illustrate and assess the reliability and dependability of the servoactuator system during 1524 hours of ground tests and 145 hours of flight testing

    A multisensing setup for the intelligent tire monitoring

    Get PDF
    The present paper offers the chance to experimentally measure, for the first time, the internal tire strain by optical fiber sensors during the tire rolling in real operating conditions. The phenomena that take place during the tire rolling are in fact far from being completely understood. Despite several models available in the technical literature, there is not a correspondently large set of experimental observations. The paper includes the detailed description of the new multi-sensing technology for an ongoing vehicle measurement, which the research group has developed in the context of the project OPTYRE. The experimental apparatus is mainly based on the use of optical fibers with embedded Fiber Bragg Gratings sensors for the acquisition of the circumferential tire strain. Other sensors are also installed on the tire, such as a phonic wheel, a uniaxial accelerometer, and a dynamic temperature sensor. The acquired information is used as input variables in dedicated algorithms that allow the identification of key parameters, such as the dynamic contact patch, instantaneous dissipation and instantaneous grip. The OPTYRE project brings a contribution into the field of experimental grip monitoring of wheeled vehicles, with implications both on passive and active safety characteristics of cars and motorbikes

    Modelling and Validation of a Regenerative Shock Absorber System

    Get PDF
    Abstract— For effective energy regeneration and vibration dampening, energy regenerative suspension systems have received more studies recently. This paper presents the dynamic modeling and a test system of a regenerative shock absorber system which converts vibration motion into rotary motion through the adjustment of hydraulic flow. Hydraulic circuit configuration achieves the one way flow and energy regeneration during both compression and extension strokes. The dynamic modeling is performed for the evaluation of design concept and the feasibility studies of regenerative shock absorber system theoretically. Based on simulated results, the efficiency of hydraulic transmission is optimized and validated in test system. The results show that the performance of hydraulic fluid, the features of rotary motion and the capability of energy regeneration are verified and compared between dynamic modeling and experiments. Meanwhile, the average power of 118.2W and 201.7W with the total energy conversion of 26.86% and 18.49% can be obtained based on experiments under sinusoidal inputs with 0.07854m/s and 0.1256m/s respectively

    Space Station long term lubrication analysis. Phase 1 preliminary tribological survey

    Get PDF
    Increases in the size, complexity, and life requirements of satellites and space vehicles have put increasing demands on the lubrication requirements for trouble-free service. Since the development costs of large systems are high, long lives with minimum maintenance are dictated. The Space Station represents the latest level of size and complexity in satellite development; it will be nearly 100 meters in major dimensions and will have a life requirement of thirty years. It will have numerous mechanisms critical to its success, some of which will be exposed to the space environment. Designing long-life lubrication systems and choosing appropriate lubricants for these systems will be necessary for their meeting the requirements and for avoiding failures with associated dependent mechanisms. The purpose of this program was to identify the various critical mechanisms and review their designs during the overall design and development stage so that problem areas could be avoided or minimized prior to the fabrication of hardware. The specific objectives were fourfold: (1) to perform a tribology survey of the Space Station for the purpose of documenting each wear point as to materials involved, environmental conditions, and operating characteristics; (2) to review each wear point (point of relative motion) as to the lubrication used and substrate materials selected in the context of its operating characteristics and the environmental conditions imposed; (3) to make recommendations for improvement in areas where the lubricant chosen and/or where the substrate (materials of the wear couple) are not considered optimum for the application; and (4) to make or recommend simulated or full scale tests in tribological areas where the state-of-the-art is being advanced, in areas where new designs are obviously being employed and a critical review would indicate that problems are a strong possibility, and/or where excessive wear, a malfunction, or excessive leakage would create fluid systems problems or contamination of exposed optical equipment

    The role of the research simulator in the systems development of rotorcraft

    Get PDF
    The potential application of the research simulator to future rotorcraft systems design, development, product improvement evaluations, and safety analysis is examined. Current simulation capabilities for fixed-wing aircraft are reviewed and the requirements of a rotorcraft simulator are defined. The visual system components, vertical motion simulator, cab, and computation system for a research simulator under development are described

    Development of a general purpose airborne simulator

    Get PDF
    Variable stability system development for General Purpose Airborne Simulator /GPAS

    A study of low-cost reliable actuators for light aircraft. Part A: Chapters 1-8

    Get PDF
    An analysis involving electro-mechanical, electro-pneumatic, and electro-hydraulic actuators was performed to study which are compatible for use in the primary and secondary flight controls of a single engine light aircraft. Actuator characteristics under investigation include cost, reliability, weight, force, volumetric requirements, power requirements, response characteristics and heat accumulation characteristics. The basic types of actuators were compared for performance characteristics in positioning a control surface model and then were mathematically evaluated in an aircraft to get the closed loop dynamic response characteristics. Conclusions were made as to the suitability of each actuator type for use in an aircraft

    A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    Get PDF
    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed

    Outdoor test stand performance of a convertible engine with variable inlet guide vanes for advanced rotorcraft propulsion

    Get PDF
    A variable inlet guide van (VIGV) type convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip airflow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss than was originally estimated. The new calculations confirm that using convertible engines rather than separate lift and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost
    corecore