6,926 research outputs found

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact

    Frequency-Domain Measurement Method for the Analysis of ESD Generators and Coupling

    Get PDF
    A method for analyzing electrostatic discharge (ESD) generators and coupling to equipment under test in the frequency domain is proposed. In ESD generators, the pulses are excited by the voltage collapse across relay contacts. The voltage collapse is replaced by one port of a vector network analyer (VNA). All the discrete and structural elements that form the ESD current pulse and the transient fields are excited by the VNA as if they were excited by the voltage collapse. In such a way, the method allows analyzing the current and field-driven linear coupling without having to discharge an ESD generator, eliminating the risk to the circuit and allowing the use of the wider dynamic range of a network analyzer relative to a real-time oscilloscope. The method is applicable to other voltage-collapse-driven tests, such as electrical fast transient, ultrawideband susceptibility testing but requires a linear coupling path

    System and IC level analysis of electrostatic discharge (ESD) and electrical fast transient (EFT) immunity and associated coupling mechanisms

    Get PDF
    The exposure of electronic circuits to lightning, electrostatic discharge (ESD), electrical fast transients (EFT) or sine wave signals can reveal RF immunity problems. Typical problems include temporary malfunctions or permanent damage of integrated circuits (ICs). In an effort to reproduce those disturbances, a series of electromagnetic compatibility standards has been developed. However, a complete understanding of the root cause of the immunity problems has yet to be established. This dissertation discusses immunity problems in three papers, starting at the system level, via the coupling path into the IC --Abstract, page iv

    Large space systems technology program

    Get PDF
    Technical challenges of shuttle-era large space systems include the development of space-configured spacecraft concepts, compatibility with the space transportation system, and cost effectiveness. The objectives and organization of NASA's large space structures program are outlined and program elements are discussed. The technology for the offset wrap-rip and the maypole (hoop/column) antenna concepts are discussed as well as analysis techniques for predicting the electromagnetic performance of a broad class of large reflectors. Deployable systems, assembly methods, and modular control systems for space platforms are described. Assembly equipment and devices, surface sensors and shape control, control and stabilization, and integrated analysis and design are also considered

    Double-Directional Information Azimuth Spectrum and Relay Network Tomography for a Decentralized Wireless Relay Network

    Full text link
    A novel channel representation for a two-hop decentralized wireless relay network (DWRN) is proposed, where the relays operate in a completely distributive fashion. The modeling paradigm applies an analogous approach to the description method for a double-directional multipath propagation channel, and takes into account the finite system spatial resolution and the extended relay listening/transmitting time. Specifically, the double-directional information azimuth spectrum (IAS) is formulated to provide a compact representation of information flows in a DWRN. The proposed channel representation is then analyzed from a geometrically-based statistical modeling perspective. Finally, we look into the problem of relay network tomography (RNT), which solves an inverse problem to infer the internal structure of a DWRN by using the instantaneous doubledirectional IAS recorded at multiple measuring nodes exterior to the relay region

    Investigation of the Surface Adhesion Phenomena and Mechanism of Gold-Plated Contacts at Superlow Making/Breaking Speed

    Get PDF
    Surface adhesion phenomena of gold-plated copper contact materials are studied in conditions of nonarc load (5/15/25 V and 0.2/0.5/1 A) and superlow speed (25 and 50 nm/s) realized by a piezoactuator during the making and breaking processes. It is shown that softening and melting of local asperities leads to interface adhesion, which results from the joule heat generated by the contact resistance; it is determined that the change of contact force with time obeys the negative exponential distribution and the time constant is associated with the adhesion force directly. Based on the fitting experimental data, the relationship between the adhesion force F z and the contact resistance R d while breaking can be expressed as F z ∝ R d -1 , which indicates that the main component of contact resistance is the bulk resistance of weld nugget and the constriction resistance is negligible

    Characterization of Human Metal ESD Reference Discharge Event and Correlation of Generator Parameters to Failure Levels-Part II: Correlation of Generator Parameters to Failure Levels

    Get PDF
    Most electrostatic discharge (ESD) generators are built in accordance with the IEC 61000-4-2 specifications. It is shown, that the voltage induced in a small loop correlates with the failure level observed in an ESD failure test on the systems comprised of fast CMOS devices, while rise time and derivative of the discharge current did not correlate well. The electric parameters of typical ESD generators and ESD generators that have been modified to reflect the current and field parameters of the human metal reference event are compared and the effect on the failure level of fast CMOS electronics is investigated. The consequences of aligning an ESD standard with the suggestions of the first paper, of this two-paper series, are discussed with respect to reproducibility and test severity

    Development of intelligent protection and automation control systems using fuzzy logic elements

    Get PDF
    In this article, the causes of technological disturbances in electrical systems are considered, and several characteristic disadvantages of the protection and automation of elements of electrical systems are highlighted. The tendency to decrease the reliability of relay protection associated with the transition from analog to digital types of protection is substantiated. Based on the studied examples, the use of fuzzy logic in protections, the expediency of using fuzzy logic elements in protection devices, and the automation of electrical systems to identify types of short circuits are justified. This article analyzes the most common damages and presents the results of modeling an electrical system with transformer coupling, where all types of asymmetric short circuits were initiated. The dynamics of changes in the symmetrical components of short-circuit currents of the forward, reverse, and zero sequences are determined. Rules have been created for the identification of asymmetric types of short circuits. An algorithm of protection and automation operation using fuzzy logic elements has been developed. The proposed algorithm of protection and automation will reduce the time to determine the type of damage and trigger protections

    Propellant Mass Scaling and Decoupling and Improved Plasma Coupling in a Pulsed Inductive Thruster

    Get PDF
    abstract: Two methods of improving the life and efficiency of the Pulsed Inductive Thruster (PIT) have been investigated. The first is a trade study of available switches to determine the best device to implement in the PIT design. The second is the design of a coil to improve coupling between the accelerator coil and the plasma. Experiments were done with both permanent and electromagnets to investigate the feasibility of implementing a modified Halbach array within the PIT to promote better plasma coupling and decrease the unused space within the thruster. This array proved to promote more complete coupling on the edges of the coil where it had been weak in previous studies. Numerical analysis was done to predict the performance of a PIT that utilized each suggested switch type. This model utilized the Alfven velocity to determine the critical mass and energy of these theoretical thrusters.Dissertation/ThesisMasters Thesis Aerospace Engineering 201
    corecore