40,403 research outputs found

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure

    Using ontology engineering for understanding needs and allocating resources in web-based industrial virtual collaboration systems

    Get PDF
    In many interactions in cross-industrial and inter-industrial collaboration, analysis and understanding of relative specialist and non-specialist language is one of the most pressing challenges when trying to build multi-party, multi-disciplinary collaboration system. Hence, identifying the scope of the language used and then understanding the relationships between the language entities are key problems. In computer science, ontologies are used to provide a common vocabulary for a domain of interest together with descriptions of the meaning of terms and relationships between them, like in an encyclopedia. These, however, often lack the fuzziness required for human orientated systems. This paper uses an engineering sector business collaboration system (www.wmccm.co.uk) as a case study to illustrate the issues. The purpose of this paper is to introduce a novel ontology engineering methodology, which generates structurally enriched cross domain ontologies economically, quickly and reliably. A semantic relationship analysis of the Google Search Engine Index was devised and evaluated. Using Semantic analysis seems to generate a viable list of subject terms. A social network analysis of the semantically derived terms was conducted to generate a decision support network with rich relationships between terms. The derived ontology was quicker to generate, provided richer internal relationships and relied far less on expert contribution. More importantly, it improved the collaboration matching capability of WMCCM

    A Generic library of problem-solving methods for scheduling applications

    Get PDF
    In this paper we describe a generic library of problem-solving methods (PSMs) for scheduling applications. Although, some attempts have been made in the past at developing libraries of scheduling methods, these only provide limited coverage: in some cases they are specific to a particular scheduling domain; in other cases they simply implement a particular scheduling technique; in other cases they fail to provide the required degree of depth and precision. Our library is based on a structured approach, whereby we first develop a scheduling task ontology, and then construct a task-specific but domain independent model of scheduling problem-solving, which generalises from specific approaches to scheduling problem-solving. Different PSMs are then constructed uniformly by specialising the generic model of scheduling problem-solving. Our library has been evaluated on a number of real-life and benchmark applications to demonstrate its generic and comprehensive nature

    A framework for integrating syntax, semantics and pragmatics for computer-aided professional practice: With application of costing in construction industry

    Get PDF
    Producing a bill of quantity is a knowledge-based, dynamic and collaborative process, and evolves with variances and current evidence. However, within the context of information system practice in BIM, knowledge of cost estimation has not been represented, nor has it been integrated into the processes based on BIM. This paper intends to establish an innovative means of taking data from the BIM linked to a project, and using it to create the necessary items for a bill of quantity that will enable cost estimation to be undertaken for the project. Our framework is founded upon the belief that three components are necessary to gain a full awareness of the domain which is being computerised; the information type which is to be assessed for compatibility (syntax), the definition for the pricing domain (semantics), and the precise implementation environment for the standards being taken into account (pragmatics). In order to achieve this, a prototype is created that allows a cost item for the bill of quantity to be spontaneously generated, by means of the semantic web ontology and a forward chain algorithm. Within this paper, ‘cost items’ signify the elements included in a bill of quantity, including details of their description, quantity and price. As a means of authenticating the process being developed, the authors of this work effectively implemented it in the production of cost items. In addition, the items created were contrasted with those produced by specialists. For this reason, this innovative framework introduces the possibility of a new means of applying semantic web ontology and forward chain algorithm to construction professional practice resulting in automatic cost estimation. These key outcomes demonstrate that, decoupling the professional practice into three key components of syntax, semantics and pragmatics can provide tangible benefits to domain use

    Including widespread geometry formats in semantic graphs using RDF literals

    Get PDF
    The exchange of building data involves both geometric and non-geometric data. A promising Linked Data approach is to embed data from existing geometry formats inside Resource Description Framework (RDF) literals. Based on a study of relevant specifications and related work, this toolset-independent approach was found suitable for the exchange of geometric construction data. To implement the approach in practice, the File Ontology for Geometry formats (FOG) and accompanying modelling method is developed. In a proof-of-concept web application that uses FOG, is demonstrated how geometry descriptions of different existing formats are automatically recognised and parsed

    An Analysis of Service Ontologies

    Get PDF
    Services are increasingly shaping the world’s economic activity. Service provision and consumption have been profiting from advances in ICT, but the decentralization and heterogeneity of the involved service entities still pose engineering challenges. One of these challenges is to achieve semantic interoperability among these autonomous entities. Semantic web technology aims at addressing this challenge on a large scale, and has matured over the last years. This is evident from the various efforts reported in the literature in which service knowledge is represented in terms of ontologies developed either in individual research projects or in standardization bodies. This paper aims at analyzing the most relevant service ontologies available today for their suitability to cope with the service semantic interoperability challenge. We take the vision of the Internet of Services (IoS) as our motivation to identify the requirements for service ontologies. We adopt a formal approach to ontology design and evaluation in our analysis. We start by defining informal competency questions derived from a motivating scenario, and we identify relevant concepts and properties in service ontologies that match the formal ontological representation of these questions. We analyze the service ontologies with our concepts and questions, so that each ontology is positioned and evaluated according to its utility. The gaps we identify as the result of our analysis provide an indication of open challenges and future work
    • 

    corecore