7,779 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Recent advancement in Disease Diagnostic using machine learning: Systematic survey of decades, comparisons, and challenges

    Full text link
    Computer-aided diagnosis (CAD), a vibrant medical imaging research field, is expanding quickly. Because errors in medical diagnostic systems might lead to seriously misleading medical treatments, major efforts have been made in recent years to improve computer-aided diagnostics applications. The use of machine learning in computer-aided diagnosis is crucial. A simple equation may result in a false indication of items like organs. Therefore, learning from examples is a vital component of pattern recognition. Pattern recognition and machine learning in the biomedical area promise to increase the precision of disease detection and diagnosis. They also support the decision-making process's objectivity. Machine learning provides a practical method for creating elegant and autonomous algorithms to analyze high-dimensional and multimodal bio-medical data. This review article examines machine-learning algorithms for detecting diseases, including hepatitis, diabetes, liver disease, dengue fever, and heart disease. It draws attention to the collection of machine learning techniques and algorithms employed in studying conditions and the ensuing decision-making process

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Deep learning for healthcare applications based on physiological signals: A review

    Get PDF
    Background and objective: We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017. Methods: An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review. Results: During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input. Conclusions: This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosi
    corecore