6,447 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Binaural virtual auditory display for music discovery and recommendation

    Get PDF
    Emerging patterns in audio consumption present renewed opportunity for searching or navigating music via spatial audio interfaces. This thesis examines the potential benefits and considerations for using binaural audio as the sole or principal output interface in a music browsing system. Three areas of enquiry are addressed. Specific advantages and constraints in spatial display of music tracks are explored in preliminary work. A voice-led binaural music discovery prototype is shown to offer a contrasting interactive experience compared to a mono smartspeaker. Results suggest that touch or gestural interaction may be more conducive input modes in the former case. The limit of three binaurally spatialised streams is identified from separate data as a usability threshold for simultaneous presentation of tracks, with no evident advantages derived from visual prompts to aid source discrimination or localisation. The challenge of implementing personalised binaural rendering for end-users of a mobile system is addressed in detail. A custom framework for assessing head-related transfer function (HRTF) selection is applied to data from an approach using 2D rendering on a personal computer. That HRTF selection method is developed to encompass 3D rendering on a mobile device. Evaluation against the same criteria shows encouraging results in reliability, validity, usability and efficiency. Computational analysis of a novel approach for low-cost, real-time, head-tracked binaural rendering demonstrates measurable advantages compared to first order virtual Ambisonics. Further perceptual evaluation establishes working parameters for interactive auditory display use cases. In summation, the renderer and identified tolerances are deployed with a method for synthesised, parametric 3D reverberation (developed through related research) in a final prototype for mobile immersive playlist editing. Task-oriented comparison with a graphical interface reveals high levels of usability and engagement, plus some evidence of enhanced flow state when using the eyes-free binaural system

    Unmanned Aerial Vehicles (UAVs) to compare foraging sea turtle density and distribution of sea turtles in two contrasting habitats in the Chagos Archipelago

    Get PDF
    Unmanned Aerial Vehicles (UAVs) facilitate observation of elusive species or remote locations, and are increasingly used to survey marine habitats. Marine Protected Areas (MPAs) are a conservation tool used to protect marine species, and regular population assessments can establish if MPAs are effectively facilitating the recovery of endangered species. Sea turtles in the Western Indian Ocean have been historically exploited through trade and by-catch causing a reduction in numbers. Here, UAVs were utilised to assess the population density and distribution of green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) turtles between ocean and lagoon environments in the Chagos Archipelago. Analysis protocols were developed to process UAV imagery, including carapace-measurement techniques, and certainty-classing turtle observations (Definite, Probable or Possible). Along 20 km of coastline, 5.13 km2 was surveyed across 11 days between July 2019 – February 2021 resulting in a high-certainty estimate of 381 turtles and a low-certainty estimate of 660. Species and life-stage identification implicate Chagos as developmental habitat for immature hawksbill turtles: 78.47% (n = 299/381) of identified definite turtles were immature, of which 66.55% (n = 199/299) were hawksbill. Diego Garcia Ocean Site 1, West sites and Turtle Cove were significant turtle hotspots (high-certainty results: 257.19 individuals/km2, 146.15 individuals/km2, and 135.08 individuals/km2, respectively), while Marina sites were least-dense (0 - 4.87 individuals/km2). Results for low-certainty data were comparable: 325.27 individuals/km2 in Diego Garcia Site 1, followed by 309.27 and 292.67 individuals/km2 in Turtle Cove. Population density decreased significantly with increasing distance from the shore, and decreased with increasing distance from Turtle Cove. Green turtles were smaller (50.33 ± 17.65 cm straight-carapace length, SCL) than hawksbill turtles (53.16 ± 11.17 cm SCL). This study highlights the Chagos Archipelago as developmental habitat for immature turtles, and demonstrates the applicability of UAVs for in-situ population monitoring to infer conservation status of marine megafauna

    Optimisation of Triboelectric Nanogenerator performance in vertical contact-separation mode

    Get PDF
    Triboelectric nanogenerator (TENG) is one of the most promising energy harvesters – a technology that uses repeated or reciprocating contact of suitably chosen materials to generate charge via the triboelectric effect (TE) and utilizes this as usable voltage and current. TENGs are attractive as they can continuously generate charge over a wide range of operating conditions and have several valuable advantages such as light weight, simple structure, low cost and high efficiency. Therefore, TENGs have been explored in a wide range of applications, including self-powered wearable electronics, powering electronics and even for harvesting ocean wave/wind energy. One of the major limitations of TENGs is their low power output (usually <500 W/m2). This thesis focuses of a few specific approaches to optimising TENG output performance. This thesis begins by presenting a solution to this challenge by optimizing a low permittivity substrate beneath the tribo-contact layer. The open circuit voltage is found to increase by a factor of 1.3 in moving from PET to the lower permittivity PTFE. TENG performance is also believed to depend on contact force, but the origin of the dependence had not previously been explored. Herein, we show that this behaviour results from a contact force dependent real contact area Ar as governed by surface roughness. The open circuit voltage Voc, short circuit current Isc and Ar for a TENG were found to increase with contact force/pressure. Critically, Voc and Isc saturate at the same contact pressure as Ar suggesting that electrical output follows the same evolution as Ar. Assuming that tribo charges can only transfer across the interface at areas of real contact, it follows that an increasing Ar with contact pressure should produce a corresponding increase in the electrical output. These results underline the importance of accounting for real contact area in TENG design, as well as the distinction between real and nominal contact area in tribo-charge density definition. High-performance ferroelectricassisted TENGs (Fe-TENGs) are developed using electrospun fibrous surfaces based on P(VDFTrFE) with dispersed BaTiO3 (BTO) nanofillers in either cubic (CBTO) or tetragonal (TBTO) form in this thesis. TENGs with three types of tribo-negative surface were investigated and output increased progressively. Critically, P(VDF-TrFE)/TBTO produced higher output than P(VDFTrFE)/ CBTO even though permittivity is nearly identical. Thus, it is shown that BTO fillers boost output, not just by increasing permittivity, but also by enhancing the crystallinity and amount of the β-phase (as TBTO produced a more crystalline β-phase present in greater amounts)

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2020-21 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Challenges and New Trends in Power Electronic Devices Reliability

    Get PDF
    The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    • …
    corecore