512 research outputs found

    Technical Challenges and Solutions of a three-phase bidirectional two stage Electric Vehicle charger

    Get PDF
    The sustainability of the power grid owing to the building strain of the ever-growing demand for electrical energy urges innovative and more practical solutions that enable active participation of end-users in stable and reliable management of power systems. One of the emerging projections of such a two-way exchange of electrical power between the grid and consumers is the developing field of bidirectional energy trade between power providers and electric vehicle owners. A bidirectional, three-phase, two-stage off-board electric vehicle EV charger design is proposed in this research. The first stage acts as alternating current AC to direct current DC converter during charging operation and behaves as three phase inverter and power factor corrector when energy exchange is from vehicle to grid. The second stage is a bidirectional DC-DC level converter linked to the first stage by a DC bus. The grid side filter is designed to enable the grid interfacing without any significant power quality problems. The proposed design, topology and the devised control infrastructure are tested through simulations on MATLAB/Simulink platform by interfacing the charger to a three-phase AC microgrid and the results approve the performance of the proposed charging topology

    Steps Toward a Net-Zero Campus with Renewable Energy Resources

    Get PDF
    With the increasing attention and support behind plug in hybrid electric vehicles, research must be conducted to examine the impacts of vehicles on electric distribution and transmission systems. This research aims first to model the behavior of vehicle battery chargers during system disturbances and mitigate any impacts. A distribution test system example is modeled and several different vehicle charger topologies are added. Faults are applied to the distribution system with vehicle chargers connected and the results are examined. Based on these results, a control strategy to mitigate their negative impacts is suggested. Photovoltaic panels are then added to the system and the study is repeated. Several services that plug in hybrid electric vehicles are capable of providing to the electric system are presented in order to allow electric vehicles to be seen as an asset to electric systems rather than a burden. These services are particularly focused on an electric system such as might be found on a college campus, which in this case is represented by the Clemson University electric distribution system. The first service presented is dynamic phase balancing of a distribution system using vehicle charging. Distribution systems typically face problems with unbalance. At most large car parks, a three phase electric supply is expected even though current standardized chargers are single phase. By monitoring system unbalance and choosing which phase a vehicle is allowed to charge from, unbalance between phases is reduced in a distribution system. The second service presented is a decentralized vehicle to campus control algorithm based on time of use rates. Using time of use electricity prices, discharging vehicle batteries during high prices and recharging at low prices is explored. Battery degradation as well as limits placed by required vehicle range availability are included in the decision on whether to charge or discharge. Electric utilities will also benefit from a reduction of load at peak times if vehicles discharge back to the campus. A comparison with stationary battery energy storage is included

    Design And Implementation Of Co-Operative Control Strategy For Hybrid AC/DC Microgrids

    Get PDF
    This thesis is mainly divided in two major sections: 1) Modelling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper positions to achieve a full visibility over the microgrid. A running average filter (RAF) based enhanced phase-locked-loop (EPLL) is designed and implemented to extract frequency and phase angle information. A PLL-based synchronizing scheme is also developed to synchronize the DGs to the microgrid. The developed laboratory prototype runs on dSpace platform for real time data acquisition, communication and controller implementation

    Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources

    Get PDF
    As electric vehicles (EVs) become more popular, the utility companies are forced to increase power generations in the grid. However, these EVs are capable of providing power to the grid to deliver different grid ancillary services in a concept known as vehicle-to-grid (V2G) and grid-to-vehicle (G2V), in which the EV can serve as a load or source at the same time. These services can provide more benefits when they are integrated with Photovoltaic (PV) generation. The proper modeling, design and control for the power conversion systems that provide the optimum integration among the EVs, PV generations and grid are investigated in this thesis. The coupling between the PV generation and integration bus is accomplished through a unidirectional converter. Precise dynamic and small-signal models for the grid-connected PV power system are developed and utilized to predict the system’s performance during the different operating conditions. An advanced intelligent maximum power point tracker based on fuzzy logic control is developed and designed using a mix between the analytical model and genetic algorithm optimization. The EV is connected to the integration bus through a bidirectional inductive wireless power transfer system (BIWPTS), which allows the EV to be charged and discharged wirelessly during the long-term parking, transient stops and movement. Accurate analytical and physics-based models for the BIWPTS are developed and utilized to forecast its performance, and novel practical limitations for the active and reactive power-flow during G2V and V2G operations are stated. A comparative and assessment analysis for the different compensation topologies in the symmetrical BIWPTS was performed based on analytical, simulation and experimental data. Also, a magnetic design optimization for the double-D power pad based on finite-element analysis is achieved. The nonlinearities in the BIWPTS due to the magnetic material and the high-frequency components are investigated rely on a physics-based co-simulation platform. Also, a novel two-layer predictive power-flow controller that manages the bidirectional power-flow between the EV and grid is developed, implemented and tested. In addition, the feasibility of deploying the quasi-dynamic wireless power transfer technology on the road to charge the EV during the transient stops at the traffic signals is proven

    An Isolated Bidirectional Single-Stage Inverter Without Electrolytic Capacitor for Energy Storage Systems

    Get PDF

    Hourly Dispatching Wind-Solar Hybrid Power System with Battery-Supercapacitor Hybrid Energy Storage

    Get PDF
    This dissertation demonstrates a dispatching scheme of wind-solar hybrid power system (WSHPS) for a specific dispatching horizon for an entire day utilizing a hybrid energy storage system (HESS) configured by batteries and supercapacitors. Here, wind speed and solar irradiance are predicted one hour ahead of time using a multilayer perceptron Artificial Neural Network (ANN), which exhibits satisfactory performance with good convergence mapping between input and target output data. Furthermore, multiple state of charge (SOC) controllers as a function of energy storage system (ESS) SOC are developed to accurately estimate the grid reference power (PGrid,ref) for each dispatching period. A low pass filter (LPF) is employed to decouple the power between a battery and a supercapacitor (SC), and the cost optimization of the HESS is computed based on the time constant of the LPF through extensive simulations. Besides, the optimum value of depth of discharge for ESS considering both cycling and calendar expenses has been investigated to optimize the life cycle cost of the ESS, which is vital for minimizing the cost of a dispatchable wind-solar power scheme. Finally, the proposed ESS control algorithm is verified by conducting control hardware-in-the loop (CHIL) experiments in a real-time digital simulator (RTDS) platform

    Optimum power control of a battery energy storage system

    Get PDF
    MasteroppgĂĄve i energiENERGI399MAMN-ENER

    Analysis and Mitigation of Impacts of Plug-In Electric Vehicles on Distribution System During Faults

    Get PDF
    With rising concerns for environment, energy security and gasoline prices, penetration of plug-in electric vehicles (PEV) is bound to increase in the distribution system. The load characteristics of the distribution system with PEVs will be considerably different and hence its effects on the system needs to evaluated. Determination of the characteristics of the impacts will help utilities to prepare methodologies in advance to accommodate this new kind of load. Batteries of most of these vehicles will be charged using a single phase power electronic chargers. To study impact of these chargers on distribution system during fault and fault recovery is the focus of this thesis. The IEEE 13 node test feeder and a single phase Level-2 battery charging system with current controlled and voltage controlled Voltage Source Converter (VSC) is modeled in PSCAD/EMTDC. A car park, with sixteen PEVs, each rated for 6.6 kW, is connected on each of the three phases, at one of the buses in the system. Temporary single line to ground fault (SLG) with auto-reclosure operation is simulated at the bus where the vehicles are connected. The response of the systems in terms of active and reactive power flows, voltage and current magnitudes is evaluated. Based on the observations, the charger is equipped with fault control logic and fault studies are repeated to gage its effectiveness
    • …
    corecore