18,527 research outputs found

    Resilience of the Critical Communication Networks Against Spreading Failures: Case of the European National and Research Networks

    Get PDF
    A backbone network is the central part of the communication network, which provides connectivity within the various systems across large distances. Disruptions in a backbone network would cause severe consequences which could manifest in the service outage on a large scale. Depending on the size and the importance of the network, its failure could leave a substantial impact on the area it is associated with. The failures of the network services could lead to a significant disturbance of human activities. Therefore, making backbone communication networks more resilient directly affects the resilience of the area. Contemporary urban and regional development overwhelmingly converges with the communication infrastructure expansion and their obvious mutual interconnections become more reciprocal. Spreading failures are of particular interest. They usually originate in a single network segment and then spread to the rest of network often causing a global collapse. Two types of spreading failures are given focus, namely: epidemics and cascading failures. How to make backbone networks more resilient against spreading failures? How to tune the topology or additionally protect nodes or links in order to mitigate an effect of the potential failure? Those are the main questions addressed in this thesis. First, the epidemic phenomena are discussed. The subjects of epidemic modeling and identification of the most influential spreaders are addressed using a proposed Linear Time-Invariant (LTI) system approach. Throughout the years, LTI system theory has been used mostly to describe electrical circuits and networks. LTI is suitable to characterize the behavior of the system consisting of numerous interconnected components. The results presented in this thesis show that the same mathematical toolbox could be used for the complex network analysis. Then, cascading failures are discussed. Like any system which can be modeled using an interdependence graph with limited capacity of either nodes or edges, backbone networks are prone to cascades. Numerical simulations are used to model such failures. The resilience of European National Research and Education Networks (NREN) is assessed, weak points and critical areas of the network are identified and the suggestions for its modification are proposed

    Network hierarchy evolution and system vulnerability in power grids

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The seldom addressed network hierarchy property and its relationship with vulnerability analysis for power transmission grids from a complex-systems point of view are given in this paper. We analyze and compare the evolution of network hierarchy for the dynamic vulnerability evaluation of four different power transmission grids of real cases. Several meaningful results suggest that the vulnerability of power grids can be assessed by means of a network hierarchy evolution analysis. First, the network hierarchy evolution may be used as a novel measurement to quantify the robustness of power grids. Second, an antipyramidal structure appears in the most robust network when quantifying cascading failures by the proposed hierarchy metric. Furthermore, the analysis results are also validated and proved by empirical reliability data. We show that our proposed hierarchy evolution analysis methodology could be used to assess the vulnerability of power grids or even other networks from a complex-systems point of view.Peer ReviewedPostprint (author's final draft

    MATCASC: A tool to analyse cascading line outages in power grids

    Full text link
    Blackouts in power grids typically result from cascading failures. The key importance of the electric power grid to society encourages further research into sustaining power system reliability and developing new methods to manage the risks of cascading blackouts. Adequate software tools are required to better analyze, understand, and assess the consequences of the cascading failures. This paper presents MATCASC, an open source MATLAB based tool to analyse cascading failures in power grids. Cascading effects due to line overload outages are considered. The applicability of the MATCASC tool is demonstrated by assessing the robustness of IEEE test systems and real-world power grids with respect to cascading failures

    A network approach for power grid robustness against cascading failures

    Get PDF
    Cascading failures are one of the main reasons for blackouts in electrical power grids. Stable power supply requires a robust design of the power grid topology. Currently, the impact of the grid structure on the grid robustness is mainly assessed by purely topological metrics, that fail to capture the fundamental properties of the electrical power grids such as power flow allocation according to Kirchhoff's laws. This paper deploys the effective graph resistance as a metric to relate the topology of a grid to its robustness against cascading failures. Specifically, the effective graph resistance is deployed as a metric for network expansions (by means of transmission line additions) of an existing power grid. Four strategies based on network properties are investigated to optimize the effective graph resistance, accordingly to improve the robustness, of a given power grid at a low computational complexity. Experimental results suggest the existence of Braess's paradox in power grids: bringing an additional line into the system occasionally results in decrease of the grid robustness. This paper further investigates the impact of the topology on the Braess's paradox, and identifies specific sub-structures whose existence results in Braess's paradox. Careful assessment of the design and expansion choices of grid topologies incorporating the insights provided by this paper optimizes the robustness of a power grid, while avoiding the Braess's paradox in the system.Comment: 7 pages, 13 figures conferenc

    Topological analysis of the power grid and mitigation strategies against cascading failures

    Get PDF
    This paper presents a complex systems overview of a power grid network. In recent years, concerns about the robustness of the power grid have grown because of several cascading outages in different parts of the world. In this paper, cascading effect has been simulated on three different networks, the IEEE 300 bus test system, the IEEE 118 bus test system, and the WSCC 179 bus equivalent model, using the DC Power Flow Model. Power Degradation has been discussed as a measure to estimate the damage to the network, in terms of load loss and node loss. A network generator has been developed to generate graphs with characteristics similar to the IEEE standard networks and the generated graphs are then compared with the standard networks to show the effect of topology in determining the robustness of a power grid. Three mitigation strategies, Homogeneous Load Reduction, Targeted Range-Based Load Reduction, and Use of Distributed Renewable Sources in combination with Islanding, have been suggested. The Homogeneous Load Reduction is the simplest to implement but the Targeted Range-Based Load Reduction is the most effective strategy.Comment: 5 pages, 8 figures, 1 table. This is a limited version of the work due to space limitations of the conference paper. A detailed version is submitted to the IEEE Systems Journal and is currently under revie

    Modelling interdependencies between the electricity and information infrastructures

    Full text link
    The aim of this paper is to provide qualitative models characterizing interdependencies related failures of two critical infrastructures: the electricity infrastructure and the associated information infrastructure. The interdependencies of these two infrastructures are increasing due to a growing connection of the power grid networks to the global information infrastructure, as a consequence of market deregulation and opening. These interdependencies increase the risk of failures. We focus on cascading, escalating and common-cause failures, which correspond to the main causes of failures due to interdependencies. We address failures in the electricity infrastructure, in combination with accidental failures in the information infrastructure, then we show briefly how malicious attacks in the information infrastructure can be addressed
    • …
    corecore