7,220 research outputs found

    Development of analysis techniques for the use of aerial photography in the monitoring of intertidal mussel beds and oyster beds

    Get PDF
    This project aimed at improving the analysis techniques of aerial photography for mussel bed recognition and mapping. In this project two techniques were tested; recognition and mapping by human eye and recognition and mapping by automatic detection software. The detection with the human eye was tested in two ways. The first test considered recognition of mussel beds in an area were contours of the previous year were available. The second test concerned a blind recognition test without any knowledge on previous locations of mussel beds

    Remote sensing in forestry: Promises and problems

    Get PDF
    There are no author-identified significant results in this report

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource

    Development of spatial inspection methods to support building inspections and compliance

    Get PDF
    The use of spatial information is important to performing building inspections and determining compliance according to regulations. This research identifies the current issues relating to lack of access to spatial information, poor integration of data sources and lack of quality information in the inspection process. A spatially-enabled framework to support building inspections was designed and proposed. A prototype was developed for a case study in a district of Riyadh, Saudi Arabia, and used to evaluate the framework. The prototype utilised a range of data and imagery of various quality to identify and compare instances of violations with calculated certainties. Results indicate substantial benefits to building inspectors for integrating a spatially-enabled process into a building inspection workflow

    Third ERTS Symposium: Abstracts

    Get PDF
    Abstracts are provided for the 112 papers presented at the Earth Resources Program Symposium held at Washington, D.C., 10-14 December, 1973
    corecore