35 research outputs found

    Embeddable Advanced Sensors for Harsh Environment Sensing Applications

    Get PDF
    Research and development in advanced sensors with embedded monitoring capability have experienced significant growth in recent years, fueled by their broad applications in real-time measurement of a wide variety of physical, chemical, and biological quantities. Compared with conventional sensors with bulky assemblies, recent progress in 3D manufacturing technologies (e.g., ultrafast laser micromachining and additive manufacturing) has opened up a new avenue in one-step fabrication of assembly-freemicro devices in various materials as well as the development of compact, customized, and intricate smart structures/components. The merits of these advanced manufacturing techniques enable the integration of embeddable advanced sensors into smart structures and components for improved robustness, enriched functionality, enhanced intelligence, and unprecedented performance

    Wax Deposition in Crude Oil Transport Lines and Wax Estimation Methods

    Get PDF
    Petroleum industry is one of the major industries serving the energy demands. Flow assurance is essential for providing continuous fuel supply. Wax deposition is the main issue that affects flow assurance or reduces the efficiency of transporting crude oil. As the maintenance cost of repairing and troubleshooting is very high, addressing issues related to flow assurance becomes critical in the petroleum industry. This chapter will explore methods used for reducing, cleaning, and monitoring deposition of wax. Wax dissolved in the crude oil gets crystallized causing accumulation across the pipe walls once the bulk temperature of the crude oil gets lower than wax appearance temperature (WAT). Mechanical, thermal, chemical, and microbial methods highlighting general practice in the industry are discussed in this chapter. Next, the direct techniques providing information about the numerical wax deposition models used along with scientific measurement techniques are emphasized. Later, the indirect measurement techniques are discussed providing information about the external probing and nondestructive techniques to obtain information about wax layer deposition inside the pipe. The role of artificial intelligence and use of fuzzy logic for effective wax prediction or in developing the existing wax numerical models are emphasized in the last section

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Research on Application of Wax Deposition Detection in the Nonmetallic Pipeline Based on Electrical Capacitance Tomography

    Get PDF
    Wax deposition detection in nonmetallic pipelines is an important requirement in the oil industry. In this paper, an ECT (electrical capacitance tomography) sensor is developed for wax deposition detection in nonmetallic pipelines. Four wax models with different concentrations were established for detection. These models were analyzed through simulations and practical experiments simultaneously and data were compared. A linear back projection algorithm is applied to reconstruct the image with both simulated and experimental data. A comparison of binary images with different concentration of stratified flow was demonstrated; this illustrates that the difference in concentration between the experimental results and profile distribution is less than 1.2%. The experimental results indicate that the ECT system is valid and feasible for detecting the degree of wax deposition in the nonmetallic pipelines

    Temporal integration of loudness as a function of level

    Get PDF
    corecore