284 research outputs found

    Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities

    Get PDF
    Achieving sustainable freight transport and citizens’ mobility operations in modern cities are becoming critical issues for many governments. By analyzing big data streams generated through IoT devices, city planners now have the possibility to optimize traffic and mobility patterns. IoT combined with innovative transport concepts as well as emerging mobility modes (e.g., ridesharing and carsharing) constitute a new paradigm in sustainable and optimized traffic operations in smart cities. Still, these are highly dynamic scenarios, which are also subject to a high uncertainty degree. Hence, factors such as real-time optimization and re-optimization of routes, stochastic travel times, and evolving customers’ requirements and traffic status also have to be considered. This paper discusses the main challenges associated with Internet of Vehicles (IoV) and vehicle networking scenarios, identifies the underlying optimization problems that need to be solved in real time, and proposes an approach to combine the use of IoV with parallelization approaches. To this aim, agile optimization and distributed machine learning are envisaged as the best candidate algorithms to develop efficient transport and mobility systems

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Cloud and IoT-based emerging services systems

    Get PDF
    The emerging services and analytics advocate the service delivery in a polymorphic view that successfully serves a variety of audience. The amalgamation of numerous modern technologies such as cloud computing, Internet of Things (IoT) and Big Data is the potential support behind the emerging services Systems. Today, IoT, also dubbed as ubiquitous sensing is taking the center stage over the traditional paradigm. The evolution of IoT necessitates the expansion of cloud horizon to deal with emerging challenges. In this paper, we study the cloud-based emerging services, useful in IoT paradigm, that support the effective data analytics. Also, we conceive a new classification called CNNC {Clouda, NNClouda} for cloud data models; further, some important case studies are also discussed to further strengthen the classification. An emerging service, data analytics in autonomous vehicles, is then described in details. Challenges and recommendations related to privacy, security and ethical concerns have been discussed

    Experimental Validation and Deployment of Observability Applications for Monitoring of Low-voltage Distribution Grids

    Get PDF
    Future distribution grids will be subjected to fluctuations in voltages and power flows due to the presence of renewable sources with intermittent power generation. The advanced smart metering infrastructure (AMI) enables the distribution system operators (DSOs) to measure and analyze electrical quantities such as voltages, currents and power at each customer connection point. Various smart grid applications can make use of the AMI data either in offline or close to real-time mode to assess the grid voltage conditions and estimate losses in the lines/cables. The outputs of these applications can enable DSOs to take corrective action and make a proper plan for grid upgrades. In this paper, the process of development and deployment of applications for improving the observability of distributions grids is described, which consists of the novel deployment framework that encompasses the proposition of data collection, communication to the servers, data storage, and data visualization. This paper discussed the development of two observability applications for grid monitoring and loss calculation, their validation in a laboratory setup, and their field deployment. A representative distribution grid in Denmark is chosen for the study using an OPAL-RT real-time simulator. The results of the experimental studies show that the proposed applications have high accuracy in estimating grid voltage magnitudes and active energy losses. Further, the field deployment of the applications prove that DSOs can gain insightful information about their grids and use them for planning purposes
    • …
    corecore