3,684 research outputs found

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Intelligence of Astronomical Optical Telescope: Present Status and Future Perspectives

    Full text link
    Artificial intelligence technology has been widely used in astronomy, and new artificial intelligence technologies and application scenarios are constantly emerging. There have been a large number of papers reviewing the application of artificial intelligence technology in astronomy. However, relevant articles seldom mention telescope intelligence separately, and it is difficult to understand the current development status and research hotspots of telescope intelligence from these papers. This paper combines the development history of artificial intelligence technology and the difficulties of critical technologies of telescopes, comprehensively introduces the development and research hotspots of telescope intelligence, then conducts statistical analysis on various research directions of telescope intelligence and defines the research directions' merits. All kinds of research directions are evaluated, and the research trend of each telescope's intelligence is pointed out. Finally, according to the advantages of artificial intelligence technology and the development trend of telescopes, future research hotspots of telescope intelligence are given.Comment: 19 pages, 6 figure, for questions or comments, please email [email protected]

    Infrared monitoring of aluminium milling processes for reduction of environmental impacts

    Get PDF
    In modern manufacturing contexts, process monitoring is an important tool aimed at ensuring quality standard fulfilment whilst maximising throughput. In this work, a monitoring system comprised of an infrared (IR) camera was employed for tool state identification and surface roughness assessment with the objective of reducing environmental impacts of a milling process. Two data processing techniques, based on statistical parameters and polynomial fitting, were applied to the temperature signal acquired from the IR camera during milling operations in order to extract significant features. These features were inputted to two different neural network based procedures: pattern recognition and fitting, for decision making support on tool condition and surface roughness evaluation respectively. These capabilities are discussed in terms of reducing waste products and energy consumption whilst further improving productivity

    Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning

    Get PDF
    Exploiting photoplethysmography signals (PPG) for non-invasive blood pressure (BP) measurement is interesting for various reasons. First, PPG can easily be measured using fingerclip sensors. Second, camera based approaches allow to derive remote PPG (rPPG) signals similar to PPG and therefore provide the opportunity for non-invasive measurements of BP. Various methods relying on machine learning techniques have recently been published. Performances are often reported as the mean average error (MAE) on the data which is problematic. This work aims to analyze the PPG- and rPPG based BP prediction error with respect to the underlying data distribution. First, we train established neural network (NN) architectures and derive an appropriate parameterization of input segments drawn from continuous PPG signals. Second, we use this parameterization to train NNs with a larger PPG dataset and carry out a systematic evaluation of the predicted blood pressure. The analysis revealed a strong systematic increase of the prediction error towards less frequent BP values across NN architectures. Moreover, we tested different train/test set split configurations which underpin the importance of a careful subject-aware dataset assignment to prevent overly optimistic results. Third, we use transfer learning to train the NNs for rPPG based BP prediction. The resulting performances are similar to the PPG-only case. Finally, we apply different personalization techniques and retrain our NNs with subject-specific data for both the PPG-only and rPPG case. Whilst the particular technique is less important, personalization reduces the prediction errors significantly

    A novel camera calibration technique based on differential evolution particle swarm optimization algorithm

    Get PDF
    Camera calibration is one of the fundamental issues in computer vision and aims at determining the intrinsic and exterior camera parameters by using image features and the corresponding 3D features. This paper proposes a relationship model for camera calibration in which the geometric parameter and the lens distortion effect of camera are taken into account in order to unify the world coordinate system (WCS), the camera coordinate system (CCS) and the image coordinate system (ICS). Differential evolution is combined with particle swarm optimization algorithm to calibrate the camera parameters effectively. Experimental results show that the proposed algorithm has a good optimization ability to avoid local optimum and can complete the visual identification tasks accurately
    • …
    corecore