245 research outputs found

    A Robust Mechanism for Defending Distributed Denial OF Service Attacks on Web Servers

    Full text link
    Distributed Denial of Service (DDoS) attacks have emerged as a popular means of causing mass targeted service disruptions, often for extended periods of time. The relative ease and low costs of launching such attacks, supplemented by the current inadequate sate of any viable defense mechanism, have made them one of the top threats to the Internet community today. Since the increasing popularity of web-based applications has led to several critical services being provided over the Internet, it is imperative to monitor the network traffic so as to prevent malicious attackers from depleting the resources of the network and denying services to legitimate users. This paper first presents a brief discussion on some of the important types of DDoS attacks that currently exist and some existing mechanisms to combat these attacks. It then points out the major drawbacks of the currently existing defense mechanisms and proposes a new mechanism for protecting a web-server against a DDoS attack. In the proposed mechanism, incoming traffic to the server is continuously monitored and any abnormal rise in the inbound traffic is immediately detected. The detection algorithm is based on a statistical analysis of the inbound traffic on the server and a robust hypothesis testing framework. Simulations carried out on the proposed mechanism have produced results that demonstrate effectiveness of the proposed defense mechanism against DDoS attacks.Comment: 18 pages, 3 figures, 5 table

    IoT-MQTT based denial of service attack modelling and detection

    Get PDF
    Internet of Things (IoT) is poised to transform the quality of life and provide new business opportunities with its wide range of applications. However, the bene_ts of this emerging paradigm are coupled with serious cyber security issues. The lack of strong cyber security measures in protecting IoT systems can result in cyber attacks targeting all the layers of IoT architecture which includes the IoT devices, the IoT communication protocols and the services accessing the IoT data. Various IoT malware such as Mirai, BASHLITE and BrickBot show an already rising IoT device based attacks as well as the usage of infected IoT devices to launch other cyber attacks. However, as sustained IoT deployment and functionality are heavily reliant on the use of e_ective data communication protocols, the attacks on other layers of IoT architecture are anticipated to increase. In the IoT landscape, the publish/- subscribe based Message Queuing Telemetry Transport (MQTT) protocol is widely popular. Hence, cyber security threats against the MQTT protocol are projected to rise at par with its increasing use by IoT manufacturers. In particular, the Internet exposed MQTT brokers are vulnerable to protocolbased Application Layer Denial of Service (DoS) attacks, which have been known to cause wide spread service disruptions in legacy systems. In this thesis, we propose Application Layer based DoS attacks that target the authentication and authorisation mechanism of the the MQTT protocol. In addition, we also propose an MQTT protocol attack detection framework based on machine learning. Through extensive experiments, we demonstrate the impact of authentication and authorisation DoS attacks on three opensource MQTT brokers. Based on the proposed DoS attack scenarios, an IoT-MQTT attack dataset was generated to evaluate the e_ectiveness of the proposed framework to detect these malicious attacks. The DoS attack evaluation results obtained indicate that such attacks can overwhelm the MQTT brokers resources even when legitimate access to it was denied and resources were restricted. The evaluations also indicate that the proposed DoS attack scenarios can signi_cantly increase the MQTT message delay, especially in QoS2 messages causing heavy tail latencies. In addition, the proposed MQTT features showed high attack detection accuracy compared to simply using TCP based features to detect MQTT based attacks. It was also observed that the protocol _eld size and length based features drastically reduced the false positive rates and hence, are suitable for detecting IoT based attacks

    Seventh Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 24-26, 2006

    Get PDF
    This booklet contains the proceedings of the Seventh Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 24-26, 2006. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    Secure VoIP Performance Measurement

    Get PDF
    This project presents a mechanism for instrumentation of secure VoIP calls. The experiments were run under different network conditions and security systems. VoIP services such as Google Talk, Express Talk and Skype were under test. The project allowed analysis of the voice quality of the VoIP services based on the Mean Opinion Score (MOS) values generated by Perceptual valuation of Speech Quality (PESQ). The quality of the audio streams produced were subjected to end-to-end delay, jitter, packet loss and extra processing in the networking hardware and end devices due to Internetworking Layer security or Transport Layer security implementations. The MOS values were mapped to Perceptual Evaluation of Speech Quality for wideband (PESQ-WB) scores. From these PESQ-WB scores, the graphs of the mean of 10 runs and box and whisker plots for each parameter were drawn. Analysis on the graphs was performed in order to deduce the quality of each VoIP service. The E-model was used to predict the network readiness and Common vulnerability Scoring System (CVSS) was used to predict the network vulnerabilities. The project also provided the mechanism to measure the throughput for each test case. The overall performance of each VoIP service was determined by PESQ-WB scores, CVSS scores and the throughput. The experiment demonstrated the relationship among VoIP performance, VoIP security and VoIP service type. The experiment also suggested that, when compared to an unsecure IPIP tunnel, Internetworking Layer security like IPSec ESP or Transport Layer security like OpenVPN TLS would improve a VoIP security by reducing the vulnerabilities of the media part of the VoIP signal. Morever, adding a security layer has little impact on the VoIP voice quality

    Side-channel timing attack on content privacy of named data networking

    Get PDF
    Tese de Doutoramento em Engenharia Electrónica e de ComputadoresA diversity of current applications, such as Netflix, YouTube, and social media, have used the Internet mainly as a content distribution network. Named Data Networking (NDN) is a network paradigm that attempts to answer today’s applications need by naming the content. NDN promises an optimized content distribution through a named content-centric design. One of the NDN key features is the use of in-network caching to improve network efficiency in terms of content distribution. However, the cached contents may put the consumer privacy at risk. Since the time response of cached contents is different from un-cached contents, the adversary may distinguish the cached contents (targets) from un-cached ones, through the side-channel timing responses. The scope of attack can be towards the content, the name, or the signature. For instance, the adversary may obtain the call history, the callee or caller location on a trusted Voice over NDN (VoNDN) and the popularity of contents in streaming applications (e.g. NDNtube, NDNlive) through side-channel timing responses of the cache. The side-channel timing attack can be mitigated by manipulating the time of the router responses. The countermeasures proposed by other researches, such as additional delay, random/probabilistic caching, group signatures, and no-caching can effectively be used to mitigate the attack. However, the content distribution may be affected by pre-configured countermeasures which may go against the goal of the original NDN paradigm. In this work, the detection and defense (DaD) approach is proposed to mitigate the attack efficiently and effectively. With the DaD usage, an attack can be detected by a multi-level detection mechanism, in order to apply the countermeasures against the adversarial faces. Also, the detections can be used to determine the severity of the attack. In order to detect the behavior of an adversary, a brute-force timing attack was implemented and simulated with the following applications and testbeds: i. a trusted application that mimics the VoNDN and identifies the cached certificate on a worldwide NDN testbed, and ii. a streaming-like NDNtube application to identify the popularity of videos on the NDN testbed and AT&T company. In simulation primary results showed that the multi-level detection based on DaD mitigated the attack about 39.1% in best-route, and 36.6% in multicast communications. Additionally, the results showed that DaD preserves privacy without compromising the efficiency benefits of in-network caching in NDNtube and VoNDN applications.Várias aplicações atuais, como o Netflix e o YouTube, têm vindo a usar a Internet como uma rede de distribuição de conteúdos. O Named Data Networking (NDN) é um paradigma recente nas redes de comunicações que tenta responder às necessidades das aplicações modernas, através da nomeação dos conteúdos. O NDN promete uma otimização da distribuição dos conteúdos usando uma rede centrada nos conteúdos. Uma das características principais do NDN é o uso da cache disponivel nos nós da rede para melhorar a eficiência desta em termos de distribuição de conteúdos. No entanto, a colocação dos conteúdos em cache pode colocar em risco a privacidade dos consumidores. Uma vez que a resposta temporal de um conteúdo em cache é diferente do de um conteúdo que não está em cache, o adversário pode distinguir os conteúdos que estão em cache dos que não estão em cache, através das respostas de side-channel. O objectivo do ataque pode ser direcionado para o conteúdo, o nome ou a assinatura da mensagem. Por exemplo, o adversário pode obter o histórico de chamadas, a localização do callee ou do caller num serviço seguro de voz sobre NDN (VoNDN) e a popularidade do conteúdos em aplicações de streaming (e.g. NDNtube, NDNlive) através das respostas temporais de side-channel. O side-channel timing attack pode ser mitigado manipulando o tempo das respostas dos routers. As contramedidas propostas por outros pesquisadores, tais como o atraso adicional, o cache aleatório /probabilístico, as assinaturas de grupo e não fazer cache, podem ser efetivamente usadas para mitigar um ataque. No entanto, a distribuição de conteúdos pode ser afetada por contramedidas pré-configuradas que podem ir contra o propósito original do paradigma NDN. Neste trabalho, a abordagem de detecção e defesa (DaD) é proposta para mitigar o ataque de forma eficiente e eficaz. Com o uso do DaD, um ataque pode ser detectado por um mecanismo de detecção multi-nível, a fim de aplicar as contramedidas contra as interfaces dos adversários. Além disso, as detecções podem ser usadas para determinar a gravidade do ataque. A fim de detectar o comportamento de um adversário, um timing attack de força-bruta foi implementado e simulado com as seguintes aplicações e plataformas (testbeds): i. uma aplicação segura que implementa o VoNDN e identifica o certificado em cache numa plataforma NDN mundial; e ii. uma aplicação de streaming do tipo NDNtube para identificar a popularidade de vídeos na plataforma NDN da empresa AT&T. Os resultados da simulação mostraram que a detecção multi-nível oferecida pelo DaD atenuou o ataque cerca de 39,1% em best-route e 36,5% em comunicações multicast. Para avaliar o efeito nos pedidos legítimos, comparou-se o DaD com uma contramedida estática, tendo-se verificado que o DaD foi capaz de preservar todos os pedidos legítimos
    corecore