166 research outputs found

    Quality of Context in Context-Aware Systems

    Get PDF
    Context-aware Systems (CASs) are becoming increasingly popular and can be found in the areas of wearable computing, mobile computing, robotics, adaptive and intelligent user interfaces. Sensors are the corner stone of context capturing however, sensed context data are commonly prone to imperfection due to the technical limitations of sensors, their availability, dysfunction, and highly dynamic nature of environment. Consequently, sensed context data might be imprecise, erroneous, conflicting, or simply missing. To limit the impact of context imperfection on the behavior of a context-aware system, a notion of Quality of Context (QoC) is used to measure quality of any information that is used as context information. Adaptation is performed only if the context data used in the decision-making has an appropriate quality level. This paper reports an analytical review for state of the art quality of context in context-aware systems and points to future research directions

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Extending Ambient Intelligence to the Internet of Things: New Challenges for QoC Management

    Get PDF
    International audienceQuality of Context (QoC) awareness is recognized as a key point for the success of context-aware computing solutions. At a time where the Internet of Things, Cloud Computing, and Ambient Intelligence paradigms bring together new opportunities for more complex context computation, the next generation of Multiscale Distributed Context Managers (MDCM) is facing new challenges concerning QoC management. This paper presents how our QoCIM framework can help application developers to manage the whole QoC life-cycle by providing genericity, openness and uniformity. Its usages are illustrated, both at design time and at runtime, in the case of an urban pollution context- and QoC-aware scenario

    Survey: Agent-based Middlewares for Context Awareness

    Get PDF
    In the last few years, many middlewares for context awareness have claimed to be agent-based. In this paper, we make a survey on the most known frameworks. We classify them according to their level of conformity to the agent paradigm and we discuss the usefulness of agents in these frameworks. Based on this survey, we enumerate several advantages of using agents in context-aware middlewares and give illustrative examples. We also point to the weakness of existing frameworks and identify challenges to be addressed

    3D Multi-Objective Deployment of an Industrial Wireless Sensor Network for Maritime Applications Utilizing a Distributed Parallel Algorithm

    Get PDF
    Effective monitoring marine environment has become a vital problem in the marine applications. Traditionally, marine application mostly utilizes oceanographic research vessel methods to monitor the environment and human parameters. But these methods are usually expensive and time-consuming, also limited resolution in time and space. Due to easy deployment and cost-effective, WSNs have recently been considered as a promising alternative for next generation IMGs. This paper focuses on solving the issue of 3D WSN deployment in a 3D engine room space of a very large crude-oil carrier (VLCC), in which many power devices are also considered. To address this 3D WSN deployment problem for maritime applications, a 3D uncertain coverage model is proposed with a new 3D sensing model and an uncertain fusion operator, is presented. The deployment problem is converted into a multi-objective problems (MOP) in which three objectives are simultaneously considered: Coverage, Lifetime and Reliability. Our aim is to achieve extensive Coverage, long Lifetime and high Reliability. We also propose a distributed parallel cooperative co-evolutionary multi-objective large-scale evolutionary algorithm (DPCCMOLSEA) for maritime applications. In the simulation experiments, the effectiveness of this algorithm is verified in comparing with five state-of-the-art algorithms. The numerical outputs demonstrate that the proposed method performs the best with respect to both optimization performance and computation time
    • …
    corecore