3,224 research outputs found

    Cerebral Palsy

    Get PDF
    Nowadays, cerebral palsy (CP) rehabilitation, along with medical and surgical interventions in children with CP, leads to better motor and postural control and can ensure ambulation and functional independence. In achieving these improvements, many modern practices may be used, such as comprehensive multidisciplinary assessment, clinical decision making, multilevel surgery, botulinum toxin applications, robotic ambulation applications, treadmill, and other walking aids to increase the quality and endurance of walking. Trainings are based on neurodevelopmental therapy, muscle training and strength applications, adaptive equipment and orthotics, communication, technological solves, and many others beyond the scope of this book. In the years of clinical and academic experiences, children with cerebral palsy have shown us that the world needs a book to give clinical knowledge to health professionals regarding these important issue. This book is an attempt to fulfill and to give “current steps” about CP. The book is intended for use by physicians, therapists, and allied health professionals who treat/rehabilitate children with CP. We focus on the recent concepts in the treatment of body and structure problems and describe the associated disability, providing suggestions for further reading. All authors presented the most frequently used and accepted treatment methods with scientifically proven efficacy and included references at the end of each chapter

    Lifelong Fitness in Ambulatory Children and Adolescents with Cerebral Palsy I: Key Ingredients for Bone and Muscle Health

    Get PDF
    Physical activity of a sufficient amount and intensity is essential to health and the prevention of a sedentary lifestyle in all children as they transition into adolescence and adulthood. While fostering a fit lifestyle in all children can be challenging, it may be even more so for those with cerebral palsy (CP). Evidence suggests that bone and muscle health can improve with targeted exercise programs for children with CP. Yet, it is not clear how musculoskeletal improvements are sustained into adulthood. In this perspective, we introduce key ingredients and guidelines to promote bone and muscle health in ambulatory children with CP (GMFCS I–III), which could lay the foundation for sustained fitness and musculoskeletal health as they transition from childhood to adolescence and adulthood. First, one must consider crucial characteristics of the skeletal and muscular systems as well as key factors to augment bone and muscle integrity. Second, to build a better foundation, we must consider critical time periods and essential ingredients for programming. Finally, to foster the sustainability of a fit lifestyle, we must encourage commitment and self-initiated action while ensuring the attainment of skill acquisition and function. Thus, the overall objective of this perspective paper is to guide exercise programming and community implementation to truly alter lifelong fitness in persons with CP

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO

    Neuromusculoskeletal Rehabilitation of Severe Cerebral Palsy

    Get PDF
    Persons with Gross Motor Function Classification System (GMFCS) levels IV and V are considered as severe cerebral palsy (CP) and are non-ambulatory. These persons are at a higher risk of complications such as hip displacement (sub-luxation or dislocation), spinopelvic deformities, musculoskeletal pain, low bone mineral density and low energy fracture. The recommended management strategy at present for this group is wheelchair-aided mobility, with which none of these complications can be prevented. There is a strong need to evaluate alternative methods of treatment that can allow assisted ambulation in persons with severe CP. The role of Single Event Multilevel Lever Arm Restoration and AntiSpasticity Surgery (SEMLARASS) and protocol-based active rehabilitation on gross motor function and ambulation of non-ambulatory persons with CP at GMFCS levels IV and V is examined. Active rehabilitation involves making the person with severe CP active through most of the waking hours and participating actively in the rehabilitation. A well-planned and executed SEMLARASS, followed by intensive, protocol-based, sequenced multidisciplinary active rehabilitation, provides the persons with GMFCS levels IV and V a significant functional improvement in gross motor function and mobility

    MUSCLE SYNERGY DURING A SINGLE LEG STANDING TEST IN AMBULATORY CHILDREN WITH CEREBRAL PALSY

    Get PDF
    INTRODUCTION: Cerebral Palsy (CP) is a sensorimotor disorder characterized by dysfunctional motor coordination, balance problems, and loss of selective motor control. Motor coordination exhibited as co-contraction, has been subjectively quantified using gait analysis, but recent studies have begun to objectively analyze the amount of co-contraction by collecting electromyography (EMG) data. Center of pressure excursion (COPE) measurements collected during a single leg standing test (SLST) have shown to be more valid measurements of balance in populations with motor disabilities than a SLST alone. A recent study has correlated increased COPE velocity with a lower fall risk as determined by reported fall frequency, suggesting a more objective measure of fall risk. The current study aimed to determine if the fall risk calculated by COPE velocity in children with CP is correlated with co-contraction index value in various muscle synergy groups. It was hypothesized that i) co-contraction index values will differ between high and low fall risk groups, ii) there will be preferential activation of different synergy groups within the high and low fall risk groups, and iii) there will be a negative and direct correlation between COPE velocity and co-contraction index values for all synergy groups. METHODS: Fall risk grouping was determined by average COPE velocity values calculated from previously reported fall frequency groups. Balance ability was determined by COPE measurements during a SLST on a force plate. Muscle synergy groups were determined by common muscle pairings at the hip, knee and ankle. Co-contraction indices were determined from linear envelopes plotted from muscle group EMG data. An independent t-test was run on muscle synergy groups between high and low fall risk groups. Nonparametric Analysis of Variance (ANOVA) and Tukey post-hoc tests were run on the high and low fall risk groups separately to determine differences in co-contraction index value within high and low fall risk groups. A Pearson correlation analyzed COPE velocity and co-contraction index value. RESULTS: No significant differences in muscle synergy between the high and low fall risk groups were found (p = 0.476, 0.076, 0.064, 0.364). The ANOVA and Tukey post-hoc tests for high fall risk group found significant differences in co-activation index value between the sagittal hip and frontal hip groups (p = 0.022) and sagittal hip and ankle groups (p = 0.016). Low fall risk group was found to have significant differences between the sagittal hip and frontal hip groups (p = 0.038) and frontal hip and knee groups (p = 0.012). Weak and negative correlations were found between COPE velocity and both knee and ankle groups (r = -0.309, -0.323, p = 0.059, 0.050). Negligible and insignificant correlations were found between frontal hip and sagittal hip synergies and COPE velocity ((r = 0.013, -0.068, p = 0.475, 0.367). CONCLUSION: There is insufficient evidence to claim that muscle group activations are different depending on fall risk grouped by COPE velocity. It is not currently possible to correlate COPE velocity to a specific synergy group recruitment. However, data do suggest that sagittal hip and knee strategies are recruited more than ankle and frontal hip strategies during SLST

    Strength Training in People with Cerebral Palsy

    Get PDF
    Disorders affecting muscle strength in children with cerebral palsy (CP) are indicated among the main reasons of the motor performance disorder. Muscle weakness is a common disorder in children with CP and is associated with insufficient or reduced motor unit discharge, inadequate coactivation of antagonist muscles, secondary myopathy, and impaired muscle physiology. Studies have shown the usefulness of strength training in children with CP and revealed the relationship of muscle strength with activity. Strength exercises increase muscle strength, flexibility, posture, and balance in CP. They also increase the level of activity in daily life and develop functional activities

    Walking with cerebral palsy : task-specific strength training and reflections on daily walking in adults with cerebral palsy

    Get PDF
    Background: Adults with cerebral palsy (CP) have impaired walking, affecting their activity and participation in social life. Still, little is known about how walking is experienced as adults. Effective strength training to improve walking in CP is not established. Ballistic plantar flexor exercises are suggested as task-specific in strength training to improve walking but have not been studied in adults with CP. Aims: The main goal of this thesis was to explore walking in adults with CP, and the secondary goals were A) To explore daily walking in adults with CP from a subjective perspective and B) To explore whether ballistic strength training is feasible and improves walking and potential muscle adaptations. Methods: Subjective perspective of daily walking was explored with semi-structured interviews and analysed with systematic text condensation. The feasibility of eight weeks of supervised ballistic strength training of ankle plantar flexors was investigated with semi-structured interviews, physical performance, and self-reported outcome measures. Walking kinematics was assessed with three-dimensional gait analysis (3DGA), and muscle adaptations were evaluated with ultrasound and a dynamometer. Results: Intrinsic factors, such as reduced functional capacity and reduced balance and extrinsic environmental factors, such as walking anomalies attracting onlookers’ attention and seasonal changes, were associated with daily walking. The participants could perform ballistic exercises on ankle plantar flexors after four weeks. Preferred walking speed increased in two of eight participants, decreased in one, and stayed unchanged for five participants. Five of six participants improved muscle strength, but muscle architecture remained unchanged. Conclusion: Daily walking was influenced by intrinsic embodied, and extrinsic environmental factors, and walking changes through adulthood calls for lifelong follow-up. Ballistic strength training of ankle plantar flexors was feasible and improved muscle strength in most participants, but walking kinematics and performance mainly remained unchanged. Ballistic strength training and physiological adaptation in spastic muscles need further investigation before the effects on walking can be determined. This conclusion is based on findings from underpowered studies
    • 

    corecore