40,358 research outputs found

    An informational approach to the global optimization of expensive-to-evaluate functions

    Full text link
    In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each evaluation contributes to the localization of good candidates for the role of global minimizer, a sequential choice of evaluation points is usually carried out. In particular, when Kriging is used to interpolate past evaluations, the uncertainty associated with the lack of information on the function can be expressed and used to compute a number of criteria accounting for the interest of an additional evaluation at any given point. This paper introduces minimizer entropy as a new Kriging-based criterion for the sequential choice of points at which the function should be evaluated. Based on \emph{stepwise uncertainty reduction}, it accounts for the informational gain on the minimizer expected from a new evaluation. The criterion is approximated using conditional simulations of the Gaussian process model behind Kriging, and then inserted into an algorithm similar in spirit to the \emph{Efficient Global Optimization} (EGO) algorithm. An empirical comparison is carried out between our criterion and \emph{expected improvement}, one of the reference criteria in the literature. Experimental results indicate major evaluation savings over EGO. Finally, the method, which we call IAGO (for Informational Approach to Global Optimization) is extended to robust optimization problems, where both the factors to be tuned and the function evaluations are corrupted by noise.Comment: Accepted for publication in the Journal of Global Optimization (This is the revised version, with additional details on computational problems, and some grammatical changes

    An Information-Theoretic Analysis of Thompson Sampling

    Full text link
    We provide an information-theoretic analysis of Thompson sampling that applies across a broad range of online optimization problems in which a decision-maker must learn from partial feedback. This analysis inherits the simplicity and elegance of information theory and leads to regret bounds that scale with the entropy of the optimal-action distribution. This strengthens preexisting results and yields new insight into how information improves performance

    Uncertainty Reduction for Stochastic Processes on Complex Networks

    Full text link
    Many real-world systems are characterized by stochastic dynamical rules where a complex network of interactions among individual elements probabilistically determines their state. Even with full knowledge of the network structure and of the stochastic rules, the ability to predict system configurations is generally characterized by a large uncertainty. Selecting a fraction of the nodes and observing their state may help to reduce the uncertainty about the unobserved nodes. However, choosing these points of observation in an optimal way is a highly nontrivial task, depending on the nature of the stochastic process and on the structure of the underlying interaction pattern. In this paper, we introduce a computationally efficient algorithm to determine quasioptimal solutions to the problem. The method leverages network sparsity to reduce computational complexity from exponential to almost quadratic, thus allowing the straightforward application of the method to mid-to-large-size systems. Although the method is exact only for equilibrium stochastic processes defined on trees, it turns out to be effective also for out-of-equilibrium processes on sparse loopy networks.Comment: 5 pages, 2 figures + Supplemental Material. A python implementation of the algorithm is available at https://github.com/filrad/Maximum-Entropy-Samplin
    • …
    corecore