827 research outputs found

    Modeling Analysis of Power Transformer Fault Diagnosis Based on Improved Relevance Vector Machine

    Get PDF
    A new method of transformer fault diagnosis based on relevance vector machine (RVM) is proposed. Bayesian estimation is applied to support vector machine (SVM) in the novel algorithm, which made fault diagnosis system work more effectively. In the paper, the analysis model is presented that the solutions of RVM have the feature of sparsity and RVM can obtain global solutions under finite samples. The process of transformer fault diagnosis for four working statuses is given in experiments and simulations. The results validated that this method has obvious advantages of diagnosis time and accuracy compared with backpropagation (BP) neural networks and general SVM methods

    An innovative method of fault detection in power transformers

    Get PDF
    The Bayesian classifier is a priori the optimal solution for minimizing the total error in problems of statistical pattern recognition. The article suggests using the classifier as a regular tool to increase the reliability of defect recognition in power oil-filled transformers based on the results of the analysis of gases dissolved in oil. The wide application of the Bayesian method for solving tasks of technical diagnostics of electrical equipment is limited by the problem of the multidimensional distribution of random parameters (features) and the nonlinearity of classification. The application of a generalized feature of a defect in the form of a nonlinear function of the transformer state parameters is proposed. This simultaneously reduces the dimension of the initial space of the controlled parameters and significantly improves the stochastic properties of the random distribution of the generalized feature. A special algorithm has been developed to perform statistical calculations and the procedure for recognizing the current technical condition of the transformer using the generated decision rule. The presented research results illustrate the possibility of the practical application of the developed method in the conditions of real operation of power transformers

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Diagnostics and prognostics utilising dynamic Bayesian networks applied to a wind turbine gearbox

    Get PDF
    The UK has the largest installed capacity of offshore wind and this is set to increase significantly in future years. The difficulty in conducting maintenance offshore leads to increased operation and maintenance costs compared to onshore but with better condition monitoring and preventative maintenance strategies these costs could be reduced. In this paper an on-line condition monitoring system is created that is capable of diagnosing machine component conditions based on an array of sensor readings. It then informs the operator of actions required. This simplifies the role of the operator and the actions required can be optimised within the program to minimise costs. The program has been applied to a gearbox oil testbed to demonstrate its operational suitability. In addition a method for determining the most cost effective maintenance strategy is examined. This method uses a Dynamic Bayesian Network to simulate the degradation of wind turbine components, effectively acting as a prognostics tool, and calculates the cost of various preventative maintenance strategies compared to purely corrective maintenance actions. These methods are shown to reduce the cost of operating wind turbines in the offshore environment

    A Robust and Explainable Data-Driven Anomaly Detection Approach For Power Electronics

    Full text link
    Timely and accurate detection of anomalies in power electronics is becoming increasingly critical for maintaining complex production systems. Robust and explainable strategies help decrease system downtime and preempt or mitigate infrastructure cyberattacks. This work begins by explaining the types of uncertainty present in current datasets and machine learning algorithm outputs. Three techniques for combating these uncertainties are then introduced and analyzed. We further present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer, which are applied in the context of a power electronic converter dataset. Specifically, the Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data. The STUMPY python library implementation of the iterative Matrix Profile is used for the creation of the detector. A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy. Our numerical results show that, with simple parameter tuning, the detector provides high accuracy and performance in a variety of fault scenarios

    Artificial intelligence and machine learning in the era of digital transformer monitoring: Exciting developments at Hitachi Energy

    Get PDF
    The era of digitalization brings new challenges and new paradigms since transformer users and manufacturers alike are moving towards digital solutions. This transition requires new approaches, new architectures, and new ways of looking at data collection, storage, and assessment. Speed and reliability of actionable information become essential at a time when data is ubiquitous, loads are more complex, and energy production moves from traditional plants to distributed generation. This article intends to show some of the ongoing efforts at Hitachi Energy to address these and other demanding technical and economic issues. Our wind power forecast approach deals with the problem of uncertainty in upcoming power demand. We propose a machine learning model to predict power demand to improve the calculation of loadability and cooling / hotspot calculations. Similarly, our Bushing Tan δ and Capacitance Fault Detection solution uses the error of a model to detect problems with Tan δ and capacitance. Our Probabilistic Fault Tree describes an open-source approach that uses Bayesian networks to find the probability of failure of a specific transformer. Finally, we describe two publications made by our team regarding the use of synthetic data created using the Duval Pentagons to generate a model that diagnoses transformer faults; and a patent regarding the creation of an infrastructure that uses blockchain to anonymize users and provide them with information about their transformer fleet using artificial intelligence
    • …
    corecore