345,794 research outputs found

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    A History of Cluster Analysis Using the Classification Society's Bibliography Over Four Decades

    Get PDF
    The Classification Literature Automated Search Service, an annual bibliography based on citation of one or more of a set of around 80 book or journal publications, ran from 1972 to 2012. We analyze here the years 1994 to 2011. The Classification Society's Service, as it was termed, has been produced by the Classification Society. In earlier decades it was distributed as a diskette or CD with the Journal of Classification. Among our findings are the following: an enormous increase in scholarly production post approximately 2000; a very major increase in quantity, coupled with work in different disciplines, from approximately 2004; and a major shift also from cluster analysis in earlier times having mathematics and psychology as disciplines of the journals published in, and affiliations of authors, contrasted with, in more recent times, a "centre of gravity" in management and engineering.Comment: 23 pages, 9 figure

    Distributed simulation of city inundation by coupled surface and subsurface porous flow for urban flood decision support system

    Get PDF
    We present a decision support system for flood early warning and disaster management. It includes the models for data-driven meteorological predictions, for simulation of atmospheric pressure, wind, long sea waves and seiches; a module for optimization of flood barrier gates operation; models for stability assessment of levees and embankments, for simulation of city inundation dynamics and citizens evacuation scenarios. The novelty of this paper is a coupled distributed simulation of surface and subsurface flows that can predict inundation of low-lying inland zones far from the submerged waterfront areas, as observed in St. Petersburg city during the floods. All the models are wrapped as software services in the CLAVIRE platform for urgent computing, which provides workflow management and resource orchestration.Comment: Pre-print submitted to the 2013 International Conference on Computational Scienc

    Analyzing large-scale DNA Sequences on Multi-core Architectures

    Full text link
    Rapid analysis of DNA sequences is important in preventing the evolution of different viruses and bacteria during an early phase, early diagnosis of genetic predispositions to certain diseases (cancer, cardiovascular diseases), and in DNA forensics. However, real-world DNA sequences may comprise several Gigabytes and the process of DNA analysis demands adequate computational resources to be completed within a reasonable time. In this paper we present a scalable approach for parallel DNA analysis that is based on Finite Automata, and which is suitable for analyzing very large DNA segments. We evaluate our approach for real-world DNA segments of mouse (2.7GB), cat (2.4GB), dog (2.4GB), chicken (1GB), human (3.2GB) and turkey (0.2GB). Experimental results on a dual-socket shared-memory system with 24 physical cores show speed-ups of up to 17.6x. Our approach is up to 3x faster than a pattern-based parallel approach that uses the RE2 library.Comment: The 18th IEEE International Conference on Computational Science and Engineering (CSE 2015), Porto, Portugal, 20 - 23 October 201

    Online Load Balancing for Network Functions Virtualization

    Full text link
    Network Functions Virtualization (NFV) aims to support service providers to deploy various services in a more agile and cost-effective way. However, the softwarization and cloudification of network functions can result in severe congestion and low network performance. In this paper, we propose a solution to address this issue. We analyze and solve the online load balancing problem using multipath routing in NFV to optimize network performance in response to the dynamic changes of user demands. In particular, we first formulate the optimization problem of load balancing as a mixed integer linear program for achieving the optimal solution. We then develop the ORBIT algorithm that solves the online load balancing problem. The performance guarantee of ORBIT is analytically proved in comparison with the optimal offline solution. The experiment results on real-world datasets show that ORBIT performs very well for distributing traffic of each service demand across multipaths without knowledge of future demands, especially under high-load conditions

    Exploring Maintainability Assurance Research for Service- and Microservice-Based Systems: Directions and Differences

    Get PDF
    To ensure sustainable software maintenance and evolution, a diverse set of activities and concepts like metrics, change impact analysis, or antipattern detection can be used. Special maintainability assurance techniques have been proposed for service- and microservice-based systems, but it is difficult to get a comprehensive overview of this publication landscape. We therefore conducted a systematic literature review (SLR) to collect and categorize maintainability assurance approaches for service-oriented architecture (SOA) and microservices. Our search strategy led to the selection of 223 primary studies from 2007 to 2018 which we categorized with a threefold taxonomy: a) architectural (SOA, microservices, both), b) methodical (method or contribution of the study), and c) thematic (maintainability assurance subfield). We discuss the distribution among these categories and present different research directions as well as exemplary studies per thematic category. The primary finding of our SLR is that, while very few approaches have been suggested for microservices so far (24 of 223, ?11%), we identified several thematic categories where existing SOA techniques could be adapted for the maintainability assurance of microservices
    corecore