35 research outputs found

    A Scalable Approach for Short-Term Predictions of Link Traffic Flow by Online Association of Clustering Profiles

    Get PDF
    Short-term prediction of traffic flows is an important topic for any traffic management control room. The large availability of real-time data raises not only the expectations for high accuracy of the forecast methodology, but also the requirements for fast computing performances. The proposed approach is based on a real-time association of the latest data received from a sensor to the representative daily profile of one among the clusters that are built offline based on an historical data set using Affinity Propagation algorithm. High scalability is achieved ignoring spatial correlations among different sensors, and for each of them an independent model is built-up. Therefore, each sensor has its own clusters of profiles with their representatives; during the short-term forecast operation the most similar representative is selected by looking at the last data received in a specified time window and the proposed forecast corresponds to the values of the cluster representative

    Identifying the topology of protein complexes from affinity purification assays

    Get PDF
    Motivation: Recent advances in high-throughput technologies have made it possible to investigate not only individual protein interactions, but also the association of these proteins in complexes. So far the focus has been on the prediction of complexes as sets of proteins from the experimental results. The modular substructure and the physical interactions within the protein complexes have been mostly ignored

    Joint Analysis of Multiple Metagenomic Samples

    Get PDF
    The availability of metagenomic sequencing data, generated by sequencing DNA pooled from multiple microbes living jointly, has increased sharply in the last few years with developments in sequencing technology. Characterizing the contents of metagenomic samples is a challenging task, which has been extensively attempted by both supervised and unsupervised techniques, each with its own limitations. Common to practically all the methods is the processing of single samples only; when multiple samples are sequenced, each is analyzed separately and the results are combined. In this paper we propose to perform a combined analysis of a set of samples in order to obtain a better characterization of each of the samples, and provide two applications of this principle. First, we use an unsupervised probabilistic mixture model to infer hidden components shared across metagenomic samples. We incorporate the model in a novel framework for studying association of microbial sequence elements with phenotypes, analogous to the genome-wide association studies performed on human genomes: We demonstrate that stratification may result in false discoveries of such associations, and that the components inferred by the model can be used to correct for this stratification. Second, we propose a novel read clustering (also termed “binning”) algorithm which operates on multiple samples simultaneously, leveraging on the assumption that the different samples contain the same microbial species, possibly in different proportions. We show that integrating information across multiple samples yields more precise binning on each of the samples. Moreover, for both applications we demonstrate that given a fixed depth of coverage, the average per-sample performance generally increases with the number of sequenced samples as long as the per-sample coverage is high enough

    Modelling Transcriptional Regulation with a Mixture of Factor Analyzers and Variational Bayesian Expectation Maximization

    Get PDF
    Understanding the mechanisms of gene transcriptional regulation through analysis of high-throughput postgenomic data is one of the central problems of computational systems biology. Various approaches have been proposed, but most of them fail to address at least one of the following objectives: (1) allow for the fact that transcription factors are potentially subject to posttranscriptional regulation; (2) allow for the fact that transcription factors cooperate as a functional complex in regulating gene expression, and (3) provide a model and a learning algorithm with manageable computational complexity. The objective of the present study is to propose and test a method that addresses these three issues. The model we employ is a mixture of factor analyzers, in which the latent variables correspond to different transcription factors, grouped into complexes or modules. We pursue inference in a Bayesian framework, using the Variational Bayesian Expectation Maximization (VBEM) algorithm for approximate inference of the posterior distributions of the model parameters, and estimation of a lower bound on the marginal likelihood for model selection. We have evaluated the performance of the proposed method on three criteria: activity profile reconstruction, gene clustering, and network inference

    Simultaneous Reconstruction of Duplication Episodes and Gene-Species Mappings

    Get PDF
    We present a novel problem, called MetaEC, which aims to infer gene-species assignments in a collection of gene trees with missing labels by minimizing the size of duplication episode clustering (EC). This problem is particularly relevant in metagenomics, where incomplete data often poses a challenge in the accurate reconstruction of gene histories. To solve MetaEC, we propose a polynomial time dynamic programming (DP) formulation that verifies the existence of a set of duplication episodes from a predefined set of episode candidates. We then demonstrate how to use DP to design an algorithm that solves MetaEC. Although the algorithm is exponential in the worst case, we introduce a heuristic modification of the algorithm that provides a solution with the knowledge that it is exact. To evaluate our method, we perform two computational experiments on simulated and empirical data containing whole genome duplication events, showing that our algorithm is able to accurately infer the corresponding events

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    corecore