85 research outputs found

    Applications of Wireless Power Transfer in Medicine : State-of-the-Art Reviews

    Get PDF
    Magnetic resonance within the field of wireless power transfer has seen an increase in popularity over the past decades. This rise can be attributed to the technological advances of electronics and the increased efficiency of popular battery technologies. The same principles of electromagnetic theory can be applied to the medical field. Several medical devices intended for use inside the body use batteries and electrical circuits that could be powered wirelessly. Other medical devices limit the mobility or make patients uncomfortable while in use. The fundamental theory of electromagnetics can improve the field by solving some of these problems. This survey paper summarizes the recent uses and discoveries of wireless power in the medical field. A comprehensive search for papers was conducted using engineering search engines and included papers from related conferences. During the initial search, 247 papers were found then non-relevant papers were eliminated to leave only suitable material. Seventeen relevant journal papers and/or conference papers were found, then separated into defined categories: Implants, Pumps, Ultrasound Imaging, and Gastrointestinal (GI) Endoscopy. The approach and methods for each paper were analyzed and compared yielding a comprehensive review of these state of the art technologies

    A System-on-Chip solution for a low power active capsule endoscope with therapeutic capabilities for clip application in the gastrointestinal tract

    Get PDF
    This paper addresses the circuit implementation challenges resulting from the integration of a therapeutic clip in a magnetically maneuverable wireless capsule intended for colonoscopy. To deal with the size constraints typical of a capsule endoscope, an Application Specific Integrated Circuit (ASIC) has been designed specifically to habilitate the release of the therapeutic clip. The ASIC is a complete System on Chip (SoC) that incorporates a circuit for the low power release of the clip, thus overcoming the limitations of the power supply system. With a size of 14mm2, the ASIC can be incorporated in practically any capsule endoscope, consuming only an idle-state power of 1.5mW

    Wireless Power Transfer Techniques for Implantable Medical Devices:A Review

    Get PDF
    Wireless power transfer (WPT) systems have become increasingly suitable solutions for the electrical powering of advanced multifunctional micro-electronic devices such as those found in current biomedical implants. The design and implementation of high power transfer efficiency WPT systems are, however, challenging. The size of the WPT system, the separation distance between the outside environment and location of the implanted medical device inside the body, the operating frequency and tissue safety due to power dissipation are key parameters to consider in the design of WPT systems. This article provides a systematic review of the wide range of WPT systems that have been investigated over the last two decades to improve overall system performance. The various strategies implemented to transfer wireless power in implantable medical devices (IMDs) were reviewed, which includes capacitive coupling, inductive coupling, magnetic resonance coupling and, more recently, acoustic and optical powering methods. The strengths and limitations of all these techniques are benchmarked against each other and particular emphasis is placed on comparing the implanted receiver size, the WPT distance, power transfer efficiency and tissue safety presented by the resulting systems. Necessary improvements and trends of each WPT techniques are also indicated per specific IMD

    Swallowable Wireless Capsule Endoscopy: Progress and Technical Challenges

    Get PDF
    Wireless capsule endoscopy (WCE) offers a feasible noninvasive way to detect the whole gastrointestinal (GI) tract and revolutionizes the diagnosis technology. However, compared with wired endoscopies, the limited working time, the low frame rate, and the low image resolution limit the wider application. The progress of this new technology is reviewed in this paper, and the evolution tendencies are analyzed to be high image resolution, high frame rate, and long working time. Unfortunately, the power supply of capsule endoscope (CE) is the bottleneck. Wireless power transmission (WPT) is the promising solution to this problem, but is also the technical challenge. Active CE is another tendency and will be the next geneion of the WCE. Nevertheless, it will not come true shortly, unless the practical locomotion mechanism of the active CE in GI tract is achieved. The locomotion mechanism is the other technical challenge, besides the challenge of WPT. The progress about the WPT and the active capsule technology is reviewed

    A WI-FI BASED SMART DATA LOGGER FOR CAPSULE ENDOSCOPY AND MEDICAL APPLICATIONS

    Get PDF
    Wireless capsule endoscopy (WCE) is a non-invasive technology for capturing images of a human digestive system for medical diagnostics purpose. With WCE, the patient swallows a miniature capsule with camera, data processing unit, RF transmitter and batteries. The capsule captures and transmits images wirelessly from inside the human gastrointestinal (GI) tract. The external data logger worn by the patient stores the images and is later on transferred to a computer for presentation and image analysis. In this research, we designed and built a Wi-Fi based, low cost, miniature, versatile wearable data logger. The data logger is used with Wi-Fi enabled smart devices, smart phones and data servers to store and present images captured by capsule. The proposed data logger is designed to work with wireless capsule endoscopy and other biosensors like- temperature and heart rate sensors. The data logger is small enough to carry and conduct daily activities, and the patient do not need to carry traditional bulky data recorder all the time during diagnosis. The doctors can remotely access data and analyze the images from capsule endoscopy using remote access feature of the data logger. Smartphones and tablets have extensive processing power with expandable memory. This research exploits those capabilities to use with wireless capsule endoscopy and medical data logging applications. The application- specific data recorders are replaced by the proposed Wi-Fi data logger and smartphone. The data processing application is distributed on smart devices like smartphone /tablets and data logger. Once data are stored in smart devices, the data can be accessed remotely, distributed to the cloud and shared within networks to enable telemedicine. The data logger can work in both standalone and network mode. In the normal mode of the device, data logger stores medical data locally into a micro Secure Digital card for future download using the universal serial bus to the computer. In network mode, the real-time data is streamed into a smartphone and tablet for further processing and storage. The proposed Wi-Fi based data logger is prototyped in the lab and tested with the capsule hardware developed in our laboratory. The supporting Android app is also developed to collect data from the data logger and present the processed data to the viewer. The PC based software is also developed to access the data recorder and capture and download data from the data logger in real-time remotely. Both in vivo and ex vivo trials using live pig have been conducted to validate the performance of the proposed device

    Prolonged energy harvesting for ingestible devices

    Get PDF
    Ingestible electronics have revolutionized the standard of care for a variety of health conditions. Extending the capacity and safety of these devices, and reducing the costs of powering them, could enable broad deployment of prolonged-monitoring systems for patients. Although previous biocompatible power-harvesting systems for in vivo use have demonstrated short (minute-long) bursts of power from the stomach, little is known about the potential for powering electronics in the longer term and throughout the gastrointestinal tract. Here, we report the design and operation of an energy-harvesting galvanic cell for continuous in vivo temperature sensing and wireless communication. The device delivered an average power of 0.23 ΌW mm⁻ÂČ of electrode area for an average of 6.1 days of temperature measurements in the gastrointestinal tract of pigs. This power-harvesting cell could provide power to the next generation of ingestible electronic devices for prolonged periods of time inside the gastrointestinal tract.National Institutes of Health (U.S.) (Grant EB-000244

    Frontiers of robotic endoscopic capsules: a review

    Get PDF
    Digestive diseases are a major burden for society and healthcare systems, and with an aging population, the importance of their effective management will become critical. Healthcare systems worldwide already struggle to insure quality and affordability of healthcare delivery and this will be a significant challenge in the midterm future. Wireless capsule endoscopy (WCE), introduced in 2000 by Given Imaging Ltd., is an example of disruptive technology and represents an attractive alternative to traditional diagnostic techniques. WCE overcomes conventional endoscopy enabling inspection of the digestive system without discomfort or the need for sedation. Thus, it has the advantage of encouraging patients to undergo gastrointestinal (GI) tract examinations and of facilitating mass screening programmes. With the integration of further capabilities based on microrobotics, e.g. active locomotion and embedded therapeutic modules, WCE could become the key-technology for GI diagnosis and treatment. This review presents a research update on WCE and describes the state-of-the-art of current endoscopic devices with a focus on research-oriented robotic capsule endoscopes enabled by microsystem technologies. The article also presents a visionary perspective on WCE potential for screening, diagnostic and therapeutic endoscopic procedures

    Wireless capsule gastrointestinal endoscopy: direction of arrival estimation based localization survey

    Get PDF
    One of the significant challenges in Capsule Endoscopy (CE) is to precisely determine the pathologies location. The localization process is primarily estimated using the received signal strength from sensors in the capsule system through its movement in the gastrointestinal (GI) tract. Consequently, the wireless capsule endoscope (WCE) system requires improvement to handle the lack of the capsule instantaneous localization information and to solve the relatively low transmission data rate challenges. Furthermore, the association between the capsule’s transmitter position, capsule location, signal reduction and the capsule direction should be assessed. These measurements deliver significant information for the instantaneous capsule localization systems based on TOA (time of arrival) approach, PDOA (phase difference of arrival), RSS (received signal strength), electromagnetic, DOA (direction of arrival) and video tracking approaches are developed to locate the WCE precisely. The current article introduces the acquisition concept of the GI medical images using the endoscopy with a comprehensive description of the endoscopy system components. Capsule localization and tracking are considered to be the most important features of the WCE system, thus the current article emphasizes the most common localization systems generally, highlighting the DOA-based localization systems and discusses the required significant research challenges to be addressed

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    sCAM: An Untethered Insertable Laparoscopic Surgical Camera Robot

    Get PDF
    Fully insertable robotic imaging devices represent a promising future of minimally invasive laparoscopic vision. Emerging research efforts in this field have resulted in several proof-of-concept prototypes. One common drawback of these designs derives from their clumsy tethering wires which not only cause operational interference but also reduce camera mobility. Meanwhile, these insertable laparoscopic cameras are manipulated without any pose information or haptic feedback, which results in open loop motion control and raises concerns about surgical safety caused by inappropriate use of force.This dissertation proposes, implements, and validates an untethered insertable laparoscopic surgical camera (sCAM) robot. Contributions presented in this work include: (1) feasibility of an untethered fully insertable laparoscopic surgical camera, (2) camera-tissue interaction characterization and force sensing, (3) pose estimation, visualization, and feedback with sCAM, and (4) robotic-assisted closed-loop laparoscopic camera control. Borrowing the principle of spherical motors, camera anchoring and actuation are achieved through transabdominal magnetic coupling in a stator-rotor manner. To avoid the tethering wires, laparoscopic vision and control communication are realized with dedicated wireless links based on onboard power. A non-invasive indirect approach is proposed to provide real-time camera-tissue interaction force measurement, which, assisted by camera-tissue interaction modeling, predicts stress distribution over the tissue surface. Meanwhile, the camera pose is remotely estimated and visualized using complementary filtering based on onboard motion sensing. Facilitated by the force measurement and pose estimation, robotic-assisted closed-loop control has been realized in a double-loop control scheme with shared autonomy between surgeons and the robotic controller.The sCAM has brought robotic laparoscopic imaging one step further toward less invasiveness and more dexterity. Initial ex vivo test results have verified functions of the implemented sCAM design and the proposed force measurement and pose estimation approaches, demonstrating the technical feasibility of a tetherless insertable laparoscopic camera. Robotic-assisted control has shown its potential to free surgeons from low-level intricate camera manipulation workload and improve precision and intuitiveness in laparoscopic imaging
    • 

    corecore