3,992 research outputs found

    Three-dimensional morphanalysis of the face.

    Get PDF
    The aim of the work reported in this thesis was to determine the extent to which orthogonal two-dimensional morphanalytic (universally relatable) craniofacial imaging methods can be extended into the realm of computer-based three-dimensional imaging. New methods are presented for capturing universally relatable laser-video surface data, for inter-relating facial surface scans and for constructing probabilistic facial averages. Universally relatable surface scans are captured using the fixed relations principle com- bined with a new laser-video scanner calibration method. Inter- subject comparison of facial surface scans is achieved using inter- active feature labelling and warping methods. These methods have been extended to groups of subjects to allow the construction of three-dimensional probabilistic facial averages. The potential of universally relatable facial surface data for applications such as growth studies and patient assessment is demonstrated. In addition, new methods for scattered data interpolation, for controlling overlap in image warping and a fast, high-resolution method for simulating craniofacial surgery are described. The results demonstrate that it is not only possible to extend universally relatable imaging into three dimensions, but that the extension also enhances the established methods, providing a wide range of new applications

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    A geometrically motivated coordinate system for exploring spacetime dynamics in numerical-relativity simulations using a quasi-Kinnersley tetrad

    Get PDF
    We investigate the suitability and properties of a quasi-Kinnersley tetrad and a geometrically motivated coordinate system as tools for quantifying both strong-field and wave-zone effects in numerical relativity (NR) simulations. We fix the radial and latitudinal coordinate degrees of freedom of the metric, using the Coulomb potential associated with the quasi-Kinnersley transverse frame. These coordinates are invariants of the spacetime and can be used to unambiguously fix the outstanding spin-boost freedom associated with the quasi-Kinnersley frame (resulting in a preferred quasi-Kinnersley tetrad (QKT)). In the limit of small perturbations about a Kerr spacetime, these coordinates and QKT reduce to Boyer-Lindquist coordinates and the Kinnersley tetrad, irrespective of the simulation gauge choice. We explore the properties of this construction both analytically and numerically, and we gain insights regarding the propagation of radiation described by a super-Poynting vector. We also quantify in detail the peeling properties of the chosen tetrad and gauge. We argue that these choices are particularly well suited for a rapidly converging wave-extraction algorithm as the extraction location approaches infinity, and we explore numerically the extent to which this property remains applicable on the interior of a computational domain. Using a number of additional tests, we verify that the prescription behaves as required in the appropriate limits regardless of simulation gauge. We explore the behavior of the geometrically motivated coordinate system in dynamical binary-black-hole NR mergers, and find them useful for visualizing features in NR simulations such as the spurious "junk" radiation. Finally, we carefully scrutinize the head-on collision of two black holes and, for example, the way in which the extracted waveform changes as it moves through the computational domain.Comment: 30 pages, 17 figures, 2 table

    Deformable Multisurface Segmentation of the Spine for Orthopedic Surgery Planning and Simulation

    Get PDF
    Purpose: We describe a shape-aware multisurface simplex deformable model for the segmentation of healthy as well as pathological lumbar spine in medical image data. Approach: This model provides an accurate and robust segmentation scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a manner that combines multisurface and shape statistics-based variants of the deformable simplex model. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence during deformation. Results: Results demonstrate validation against user-assisted expert segmentation, showing excellent boundary agreement and prevention of spatial overlap between neighboring surfaces. This section also plots the characteristics of the statistical shape model, such as compactness, generalizability and specificity, as a function of the number of modes used to represent the family of shapes. Final results demonstrate a proof-of-concept deformation application based on the open-source surgery simulation Simulation Open Framework Architecture toolkit. Conclusions: To summarize, we present a deformable multisurface model that embeds a shape statistics force, with applications to surgery planning and simulation

    Multi-Surface Simplex Spine Segmentation for Spine Surgery Simulation and Planning

    Get PDF
    This research proposes to develop a knowledge-based multi-surface simplex deformable model for segmentation of healthy as well as pathological lumbar spine data. It aims to provide a more accurate and robust segmentation scheme for identification of intervertebral disc pathologies to assist with spine surgery planning. A robust technique that combines multi-surface and shape statistics-aware variants of the deformable simplex model is presented. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user-assistance is allowed to disable the prior shape influence during deformation. Results have been validated against user-assisted expert segmentation

    A hierarchical curve-based approach to the analysis of manifold data

    Get PDF
    One of the data structures generated by medical imaging technology is high resolution point clouds representing anatomical surfaces. Stereophotogrammetry and laser scanning are two widely available sources of this kind of data. A standardised surface representation is required to provide a meaningful correspondence across different images as a basis for statistical analysis. Point locations with anatomical definitions, referred to as landmarks, have been the traditional approach. Landmarks can also be taken as the starting point for more general surface representations, often using templates which are warped on to an observed surface by matching landmark positions and subsequent local adjustment of the surface. The aim of the present paper is to provide a new approach which places anatomical curves at the heart of the surface representation and its analysis. Curves provide intermediate structures which capture the principal features of the manifold (surface) of interest through its ridges and valleys. As landmarks are often available these are used as anchoring points, but surface curvature information is the principal guide in estimating the curve locations. The surface patches between these curves are relatively flat and can be represented in a standardised manner by appropriate surface transects to give a complete surface model. This new approach does not require the use of a template, reference sample or any external information to guide the method and, when compared with a surface based approach, the estimation of curves is shown to have improved performance. In addition, examples involving applications to mussel shells and human faces show that the analysis of curve information can deliver more targeted and effective insight than the use of full surface information

    Learning about compact binary merger: the interplay between numerical relativity and gravitational-wave astronomy

    Get PDF
    Activities in data analysis and numerical simulation of gravitational waves have to date largely proceeded independently. In this work we study how waveforms obtained from numerical simulations could be effectively used within the data analysis effort to search for gravitational waves from black hole binaries. We propose measures to quantify the accuracy of numerical waveforms for the purpose of data analysis and study how sensitive the analysis is to errors in the waveforms. We estimate that ~100 templates (and ~10 simulations with different mass ratios) are needed to detect waves from non-spinning binary black holes with total masses in the range 100 Msun < M < 400 Msun using initial LIGO. Of course, many more simulation runs will be needed to confirm that the correct physics is captured in the numerical evolutions. From this perspective, we also discuss sources of systematic errors in numerical waveform extraction and provide order of magnitude estimates for the computational cost of simulations that could be used to estimate the cost of parameter space surveys. Finally, we discuss what information from near-future numerical simulations of compact binary systems would be most useful for enhancing the detectability of such events with contemporary gravitational wave detectors and emphasize the role of numerical simulations for the interpretation of eventual gravitational-wave observations.Comment: 19 pages, 12 figure
    • …
    corecore