46,585 research outputs found

    Improved electromagnetic compatibility standards for the interconnected wireless world

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The future is wireless, a world where everything is interconnected. However, the current standards for ensuring the electromagnetic compatibility (EMC) and the coexistence of such wireless systems urge for a major update. It is shown how novel statistical approaches based on the amplitude probability distribution detector and time-domain measurements are better suited for estimating the degradation caused by electromagnetic interferences on digital communication systems than the established practice of determining compliance according to the quasi-peak detector levels using a pass/fail criterion. Therefore, a redefinition of the test methods and of the compliance requirements in terms of EMC standards must be a priority of the international standardization bodies. Finally, a discussion of the fundamental challenges involved in this standardization breakthrough for EMC is delivered.Postprint (author's final draft

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Investigations on electromagnetic noises and interactions in electronic architectures : a tutorial case on a mobile system

    Get PDF
    Electromagnetic interactions become critic in embedded and smart electronic structures. The increase of electronic performances confined in a finite volume or support for mobile applications defines new electromagnetic environment and compatibility configurations (EMC). With canonical demonstrators developed for tutorials and EMC experiences, this paper present basic principles and experimental techniques to investigate and control these severe interferences. Some issues are reviewed to present actual and future scientific challenges for EMC at electronic circuit level

    Harmonic balance surrogate-based immunity modeling of a nonlinear analog circuit

    Get PDF
    A novel harmonic balance surrogate-based technique to create fast and accurate behavioral models predicting, in the early design stage, the performance of nonlinear analog devices during immunity tests is presented. The obtained immunity model hides the real netlist, reduces the simulation time, and avoids expensive and time-consuming measurements after tape-out, while still providing high accuracy. The model can easily be integrated into a circuit simulator together with additional subcircuits, e.g., board and package models, as such allowing to efficiently reproduce complete immunity test setups during the early design stage and without disclosing any intellectual property. The novel method is validated by means of application to an industrial case study, being an automotive voltage regulator, clearly showing the technique's capabilities and practical advantages

    Efficient full-wave modeling of radiative near-field interactions in semi-anechoic conditions

    Get PDF
    In this paper, a full-wave method to efficiently compute the electromagnetic interaction between two devices placed in semi-anechoic conditions is proposed. The aim of this research is the accurate and efficient reproduction of radiated immunity and emission tests in simulation. The employed technique relies on a single simulation (or measurement) of the radiation pattern of each device and allows an arbitrary relative position between the devices. The resulting procedure is practical, has a low computational cost, and shows good agreement with reference solutions

    Evaluation of the Electromagnetic Environment Around Underground HVDC Lines

    Get PDF
    This paper analyses the magnetic-field emissions of a high-voltage dc transmission line constituted by two couples of underground cables laid along a highway. The transmission system, including all its components (transformers, converters filters, and line), is modeled through a circuital approach, which provides the distribution of the current harmonics along the line length. The magnetic field produced in the environment is then estimated by a hybrid finite element/boundary element method. The electromagnetic interferences with existing appliances and the human exposure to magnetic fields are investigated considering different laying configurations, conductor dispositions, and supply conditions. Compliance with regulations limiting human exposure and technical standards ensuring electromagnetic compatibility of appliances and devices are assessed

    A Parameterization Scheme for Lossy Transmission Line Macromodels with Application to High Speed Interconnects in Mobile Devices

    Get PDF
    We introduce a novel parameterization scheme based on the generalized method of characteristics (MoC) formacromodels of transmission-line structures having a cross section depending on several free geometrical and material parameters. This situation is common in early design stages, when the physical structures still have to be finalized and optimized under signal integrity and electromagnetic compatibility constraints. The topology of the adopted line macromodels has been demonstrated to guarantee excellent accuracy and efficiency. The key factors are propagation delay extraction and rational approximations, which intrinsically lead to a SPICE-compatible macromodel stamp. We introduce a scheme that parameterizes this stamp as a function of geometrical and material parameters such as conductor-width and separation, dielectric thickness, and permettivity. The parameterization is performed via multidimensional interpolation of the residue matrices in the rational approximation of characteristic admittance and propagation operators. A significant advantage of this approach consists of the possibility of efficiently utilizing the MoC methodology in an optimization scheme and eventually helping the design of interconnects.We apply the proposed scheme to flexible printed interconnects that are typically found in portable devices having moving parts. Several validations demonstrate the effectiveness of the approac

    On-board compact system for full time-domain electromagnetic interference measuraments

    Get PDF
    Postprint (published version

    Time-Domain Finite Elements for Virtual Testing of Electromagnetic Compatibility

    Get PDF
    The paper presents a time-domain finite-element solver developed for simulations related to solving electromagnetic compatibility issues. The software is applied as a module integrated into a computational framework developed within a FP7 European project High Intensity Radiated Field – Synthetic Environment (HIRF SE) able to simulate a large class of problems. In the paper, the mathematical formulation is briefly presented, and special emphasis is put on the user point of view on the simulation tool-chain. The functionality is demonstrated on the computation of shielding effectiveness of two composite materials. Results are validated through experimental measurements and agreement is confirmed by automatic feature selective algorithms
    • 

    corecore