24,974 research outputs found

    A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency

    Get PDF
    In this paper, we address the problem of asset performance monitoring, with the intention of both detecting any potential reliability problem and predicting any loss of energy consumption e ciency. This is an important concern for many industries and utilities with very intensive capitalization in very long-lasting assets. To overcome this problem, in this paper we propose an approach to combine an Artificial Neural Network (ANN) with Data Mining (DM) tools, specifically with Association Rule (AR) Mining. The combination of these two techniques can now be done using software which can handle large volumes of data (big data), but the process still needs to ensure that the required amount of data will be available during the assets’ life cycle and that its quality is acceptable. The combination of these two techniques in the proposed sequence di ers from previous works found in the literature, giving researchers new options to face the problem. Practical implementation of the proposed approach may lead to novel predictive maintenance models (emerging predictive analytics) that may detect with unprecedented precision any asset’s lack of performance and help manage assets’ O&M accordingly. The approach is illustrated using specific examples where asset performance monitoring is rather complex under normal operational conditions.Ministerio de Economía y Competitividad DPI2015-70842-

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Neural networks for small scale ORC optimization

    Get PDF
    This study concerns a thermodynamic and technical optimization of a small scale Organic Rankine Cycle system for waste heat recovery applications. An Artificial Neural Network (ANN) has been used to develop a thermodynamic model to be used for the maximization of the production of power while keeping the size of the heat exchangers and hence the cost of the plant at its minimum. R1234yf has been selected as the working fluid. The results show that the use of ANN is promising in solving complex nonlinear optimization problems that arise in the field of thermodynamics

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Report of the LSPI/NASA Workshop on Lunar Base Methodology Development

    Get PDF
    Groundwork was laid for computer models which will assist in the design of a manned lunar base. The models, herein described, will provide the following functions for the successful conclusion of that task: strategic planning; sensitivity analyses; impact analyses; and documentation. Topics addressed include: upper level model description; interrelationship matrix; user community; model features; model descriptions; system implementation; model management; and plans for future action
    • …
    corecore