1,440 research outputs found

    Modeling Watershed Sensitivity to Climate Change in Systems Affected by Discharge of Mine Tailings

    Get PDF
    For more than a century, a large volume of gold-mining tailings was deposited in Whitewood Creek and the Belle Fourche River, tributaries to the Cheyenne River in western South Dakota. Much of it still remains, and field and historical evidence indicates continued remobilization of tailings-containing alluvium in these bedrock-dominated channels. Both long-term, natural fluctuations in climate and anthropogenically driven changes can impact regional precipitation, temperature, hydrologic patterns, and ecosystem functions. Such changes have the potential to affect both the transport and distribution of arsenic-laden sediments and mechanical erosion that can undermine the stability of channel-bed and overbank material. This study reevaluates published literature and simulates future climatic conditions with Global Change Models downscaled to hydrologic models to detect trends and determine if they differ from historical time series data or exhibit non-stationarity. Arsenic concentrations vary in solution with relatively small shifts in pH and Eh, allowing for the sorption/desorption on sediment and mobilization into the dissolved or aqueous phase. Published data suggest that the presence of competing anions are also important factors in controlling arsenic release. Carbonates in the alluvium and locally occurring bedrock control the formation of acidic conditions. This river system continually adjusts to historical and recent changes to achieve a “new equilibrium” from the cessation of mining discharge; geomorphic changes linked to regional continental glaciation; stream channel readjustment due to discharge velocity changes in the Oahe Reservoir; and channel instability. Knowing the relationship between streamflow and sediment transport and assessing a stream’s sediment transport capacity are important to planning and managing river corridor protection and restoration. These are also significant considerations in predicting potential exposure of contaminant sediments to human, ecological, and biological receptors. It appears climate change may be exerting an influence on hydroclimatic variables in the Lower Cheyenne River Basin, difficult to pinpoint in a qualitative assessment. In general, water resource managers should build resiliency into their designs to adaptably account for potential future impact of climate variability. Adviser: Dr. Shannon L. Bartelt-Hun

    Modeling of Soil Erosion and Sediment Transport

    Get PDF
    The Special Issue entitled “Modeling of Soil Erosion and Sediment Transport” focuses on the mathematical modeling of soil erosion caused by rainfall and runoff at a basin scale, as well as on the sediment transport in the streams of the basin. In concrete terms, the quantification of these phenomena by means of mathematical modeling and field measurements has been studied. The following mathematical models (software) were used, amongst others: AnnAGNPS, SWAT, SWAT-Twn, TUSLE, WRF-Hydro-Sed, CORINE, LCM-MUSLE, EROSION-3D, HEC-RAS, SRC, WA-ANN. The Special Issue contains 14 articles that can be classified into the following five categories: Category A: “Soil erosion and sediment transport modeling in basins”; Category B: “Inclusion of soil erosion control measures in soil erosion models”; Category C: “Soil erosion and sediment transport modeling in view of reservoir sedimentation”; Category D: “Field measurements of gully erosion”; Category E: “Stream sediment transport modeling”. Most studies presented in the Special Issue were applied to different basins in Europe, America, and Asia, and are the result of the cooperation between universities and/or research centers in different countries and continents, which constitutes an optimistic fact for the international scientific communication

    Elemental Concentration and Pollution in Soil, Water, and Sediment

    Get PDF
    This book, entitled “Elemental Concentration and Pollution in Soil, Water, and Sediment”, presents an updated overview of the main trace elements in living organisms. This collection brings researchers from different fields together, including those from biogeochemistry and ecotoxicology in various environmental media, in order to provide a more comprehensive understanding of the environmental fate of trace elements in their biogeochemical cycles for different ecosystems

    Internet of Things for Sustainable Mining

    Get PDF
    The sustainable mining Internet of Things deals with the applications of IoT technology to the coupled needs of sustainable recovery of metals and a healthy environment for a thriving planet. In this chapter, the IoT architecture and technology is presented to support development of a digital mining platform emphasizing the exploration of rock–fluid–environment interactions to develop extraction methods with maximum economic benefit, while maintaining and preserving both water quantity and quality, soil, and, ultimately, human health. New perspectives are provided for IoT applications in developing new mineral resources, improved management of tailings, monitoring and mitigating contamination from mining. Moreover, tools to assess the environmental and social impacts of mining including the demands on dwindling freshwater resources. The cutting-edge technologies that could be leveraged to develop the state-of-the-art sustainable mining IoT paradigm are also discussed

    Proceedings of the XXVIIIth TELEMAC User Conference 18-19 October 2022

    Get PDF
    Hydrodynamic

    MINEO Southern Europe environment test site : contamination impact mapping and modelling : final Report

    Get PDF
    Relatório final do projeto MINEO: Assessing and monitoring the environmental impact of mining activities in Europe using advanced Earth Observation techniques. Project funded by the European Community under the “Information Society Technology” Programme (1998-2002)ABSTRACT: Under the framework of the MINEO project, the abandoned S.Domingos mining area as been selected as representative of Southern Europe Environment to test methods and tools for assessing and monitoring the environmental impact of mining activities using hyperspectral data and other relevant data sets. The S.Domingos mining area, is characterised by a long-term mining activity, since pre-roman times till the 1960’s, and is included in the group of Volcanogenic Massive Sulphide deposits of the Iberian Pyrite Belt. The orebody contained Cu, and also Zn and Pb. Several facilities were developed for mining works and ore transportation, covering an area of 50km2, facilitating dispersion of related pollutants. The main environmental problems can be summarised as related to waste material and their pollutant content (Zn, Pb, Sb, Cu, As, Hg and Cd), acid waters (minimum pH value of 1.7) and associated dispersion, as well as landscape disruption. Hyperspectral images were able to identify mineralogical/chemical dispersion of waste material related to Acid Mine Drainage (AMD) following two approaches: one related to AMD waste material field spectra and the other based on AMD minerals, using standard spectral libraries. The processing techniques used were mainly based on the Spectral Angle Mapper classifier and Mixture Tunned Matched Filtering. Globally, both mapping results obtained, either in AMD waste material either in AMD minerals, were able to detect mineralogical/chemical characteristics of imaged ground data, which were validated by field data. The GIS geochemical modelling allowed the determination of effective AMD area of influence, based in water pH values, using geostatistical methods. The Indicator “Collocate-Cokriging” of the water pH using the distance to the highest correlated AMD waste material (mixed sulphur materials from hyperspectral classification) predicts the AMD dispersion in the area related to that material. This methodology achieved good results and could be applied in new areas using waste material hyperspectral image classification for AMD delimitation area.N/
    • 

    corecore