1,524 research outputs found

    Instant restore after a media failure

    Full text link
    Media failures usually leave database systems unavailable for several hours until recovery is complete, especially in applications with large devices and high transaction volume. Previous work introduced a technique called single-pass restore, which increases restore bandwidth and thus substantially decreases time to repair. Instant restore goes further as it permits read/write access to any data on a device undergoing restore--even data not yet restored--by restoring individual data segments on demand. Thus, the restore process is guided primarily by the needs of applications, and the observed mean time to repair is effectively reduced from several hours to a few seconds. This paper presents an implementation and evaluation of instant restore. The technique is incrementally implemented on a system starting with the traditional ARIES design for logging and recovery. Experiments show that the transaction latency perceived after a media failure can be cut down to less than a second and that the overhead imposed by the technique on normal processing is minimal. The net effect is that a few "nines" of availability are added to the system using simple and low-overhead software techniques

    A Technology Proposal for a Management Information System for the Director’s Office, NAL.

    Get PDF
    This technology proposal attempts in giving a viable solution for a Management Information System (MIS) for the Director's Office. In today's IT scenario, an Organization's success greatly depends on its ability to get accurate and timely data on its operations of varied nature and to manage this data effectively to guide its activities and meet its goals. To cater to the information needs of an Organization or an Office like the Director's Office, information systems are developed and deployed to gather and process data in ways that produce a variety of information to the end-user. MIS can therefore can be defined as an integrated user-machine system for providing information to support operations, management and decision-making functions in an Organization. The system in a nutshell, utilizes computer hardware and software, manual procedures, models for analysis planning, control and decision-making and a database. Using state-of-the-art front-end and back-end web based tools, this technology proposal attempts to provide a single-point Information Management, Information Storage, Information Querying and Information Retrieval interface to the Director and his office for handling all information traffic flow in and out of the Director's Office

    Cloud Bioinformatics in a private cloud deployment

    No full text

    Cloud Storage and Bioinformatics in a private cloud deployment: Lessons for Data Intensive research

    No full text
    This paper describes service portability for a private cloud deployment, including a detailed case study about Cloud Storage and bioinformatics services developed as part of the Cloud Computing Adoption Framework (CCAF). Our Cloud Storage design and deployment is based on Storage Area Network (SAN) technologies, details of which include functionalities, technical implementation, architecture and user support. Experiments for data services (backup automation, data recovery and data migration) are performed and results confirm backup automation is completed swiftly and is reliable for data-intensive research. The data recovery result confirms that execution time is in proportion to quantity of recovered data, but the failure rate increases in an exponential manner. The data migration result confirms execution time is in proportion to disk volume of migrated data, but again the failure rate increases in an exponential manner. In addition, benefits of CCAF are illustrated using several bioinformatics examples such as tumour modelling, brain imaging, insulin molecules and simulations for medical training. Our Cloud Storage solution described here offers cost reduction, time-saving and user friendliness

    The Design and Operation of The Keck Observatory Archive

    Get PDF
    The Infrared Processing and Analysis Center (IPAC) and the W. M. Keck Observatory (WMKO) operate an archive for the Keck Observatory. At the end of 2013, KOA completed the ingestion of data from all eight active observatory instruments. KOA will continue to ingest all newly obtained observations, at an anticipated volume of 4 TB per year. The data are transmitted electronically from WMKO to IPAC for storage and curation. Access to data is governed by a data use policy, and approximately two-thirds of the data in the archive are public.Comment: 12 pages, 4 figs, 4 tables. Presented at Software and Cyberinfrastructure for Astronomy III, SPIE Astronomical Telescopes + Instrumentation 2014. June 2014, Montreal, Canad

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    A PVSS Application for Monitoring the Start-up of the Super Proton Synchrotron after Major Breakdowns

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) systems are widely employed in monitoring and controlling technical facilities at the European Organization for Nuclear Research (CERN). Various kinds of SCADA systems are used for the supervision of electricity, cooling, cryogenics and other systems as wells as for the control of the laboratory's particle accelerators and high-energy physics (HEP) experiments. This thesis is concerned with the development of a software application for two of CERN's main control rooms, for monitoring the start-up of the Super Proton Synchrotron (SPS), the laboratory's second largest particle accelerator. Following a CERN recommendation, the application is based on PVSS II, a commercial off-the-shell SCADA product that will replace the heterogeneous component architecture currently used for monitoring SPS equipment. The set-up of the SCADA system in a redundant, distributed and scattered manner in order to guarantee high dependability and the possibility of doing data exchange with external PVSS II systems is a central issue of this work. A PVSS Driver Manager to SL-Equip, a middleware allowing data exchange with heterogeneous remote devices located around the accelerator, is developed in order to communicate with SPS hardware. The object-oriented design and the C++ implementation of this driver are discussed in a detailed manner. Special attention is paid to the design and implementation of the application's user interface, for this is the part of the system that the control rooms' operators will be confronted with on a daily basis. A first prototype of this interface, consisting of a series of PVSS panels, is developed in close co-operation with the operators concerned. In addition to the application itself, an off-line database system for managing static PVSS configuration information is created. An integration strategy for existing configuration data is developed, a relational database structure for storing the information is designed and Perl scripts and PL/SQL procedures for data import and export are implemented
    corecore