374 research outputs found

    Effizientes Maschinelles Lernen für die Angriffserkennung

    Get PDF
    Detecting and fending off attacks on computer systems is an enduring problem in computer security. In light of a plethora of different threats and the growing automation used by attackers, we are in urgent need of more advanced methods for attack detection. In this thesis, we address the necessity of advanced attack detection and develop methods to detect attacks using machine learning to establish a higher degree of automation for reactive security. Machine learning is data-driven and not void of bias. For the effective application of machine learning for attack detection, thus, a periodic retraining over time is crucial. However, the training complexity of many learning-based approaches is substantial. We show that with the right data representation, efficient algorithms for mining substring statistics, and implementations based on probabilistic data structures, training the underlying model can be achieved in linear time. In two different scenarios, we demonstrate the effectiveness of so-called language models that allow to generically portray the content and structure of attacks: On the one hand, we are learning malicious behavior of Flash-based malware using classification, and on the other hand, we detect intrusions by learning normality in industrial control networks using anomaly detection. With a data throughput of up to 580 Mbit/s during training, we do not only meet our expectations with respect to runtime but also outperform related approaches by up to an order of magnitude in detection performance. The same techniques that facilitate learning in the previous scenarios can also be used for revealing malicious content, embedded in passive file formats, such as Microsoft Office documents. As a further showcase, we additionally develop a method based on the efficient mining of substring statistics that is able to break obfuscations irrespective of the used key length, with up to 25 Mbit/s and thus, succeeds where related approaches fail. These methods significantly improve detection performance and enable operation in linear time. In doing so, we counteract the trend of compensating increasing runtime requirements with resources. While the results are promising and the approaches provide urgently needed automation, they cannot and are not intended to replace human experts or traditional approaches, but are designed to assist and complement them.Die Erkennung und Abwehr von Angriffen auf Endnutzer und Netzwerke ist seit vielen Jahren ein anhaltendes Problem in der Computersicherheit. Angesichts der hohen Anzahl an unterschiedlichen Angriffsvektoren und der zunehmenden Automatisierung von Angriffen, bedarf es dringend moderner Methoden zur Angriffserkennung. In dieser Doktorarbeit werden Ansätze entwickelt, um Angriffe mit Hilfe von Methoden des maschinellen Lernens zuverlässig, aber auch effizient zu erkennen. Sie stellen der Automatisierung von Angriffen einen entsprechend hohen Grad an Automatisierung von Verteidigungsmaßnahmen entgegen. Das Trainieren solcher Methoden ist allerdings rechnerisch aufwändig und erfolgt auf sehr großen Datenmengen. Laufzeiteffiziente Lernverfahren sind also entscheidend. Wir zeigen, dass durch den Einsatz von effizienten Algorithmen zur statistischen Analyse von Zeichenketten und Implementierung auf Basis von probabilistischen Datenstrukturen, das Lernen von effektiver Angriffserkennung auch in linearer Zeit möglich ist. Anhand von zwei unterschiedlichen Anwendungsfällen, demonstrieren wir die Effektivität von Modellen, die auf der Extraktion von sogenannten n-Grammen basieren: Zum einen, betrachten wir die Erkennung von Flash-basiertem Schadcode mittels Methoden der Klassifikation, und zum anderen, die Erkennung von Angriffen auf Industrienetzwerke bzw. SCADA-Systeme mit Hilfe von Anomaliedetektion. Dabei erzielen wir während des Trainings dieser Modelle einen Datendurchsatz von bis zu 580 Mbit/s und übertreffen gleichzeitig die Erkennungsleistung von anderen Ansätzen deutlich. Die selben Techniken, um diese lernenden Ansätze zu ermöglichen, können außerdem für die Erkennung von Schadcode verwendet werden, der in anderen Dateiformaten eingebettet und mittels einfacher Verschlüsselungen obfuskiert wurde. Hierzu entwickeln wir eine Methode die basierend auf der statistischen Auswertung von Zeichenketten einfache Verschlüsselungen bricht. Der entwickelte Ansatz arbeitet unabhängig von der verwendeten Schlüssellänge, mit einem Datendurchsatz von bis zu 25 Mbit/s und ermöglicht so die erfolgreiche Deobfuskierung in Fällen an denen andere Ansätze scheitern. Die erzielten Ergebnisse in Hinsicht auf Laufzeiteffizienz und Erkennungsleistung sind vielversprechend. Die vorgestellten Methoden ermöglichen die dringend nötige Automatisierung von Verteidigungsmaßnahmen, sollen den Experten oder etablierte Methoden aber nicht ersetzen, sondern diese unterstützen und ergänzen

    Self-learning Anomaly Detection in Industrial Production

    Get PDF

    Deployment and Operation of Complex Software in Heterogeneous Execution Environments

    Get PDF
    This open access book provides an overview of the work developed within the SODALITE project, which aims at facilitating the deployment and operation of distributed software on top of heterogeneous infrastructures, including cloud, HPC and edge resources. The experts participating in the project describe how SODALITE works and how it can be exploited by end users. While multiple languages and tools are available in the literature to support DevOps teams in the automation of deployment and operation steps, still these activities require specific know-how and skills that cannot be found in average teams. The SODALITE framework tackles this problem by offering modelling and smart editing features to allow those we call Application Ops Experts to work without knowing low level details about the adopted, potentially heterogeneous, infrastructures. The framework offers also mechanisms to verify the quality of the defined models, generate the corresponding executable infrastructural code, automatically wrap application components within proper execution containers, orchestrate all activities concerned with deployment and operation of all system components, and support on-the-fly self-adaptation and refactoring

    AI-based intrusion detection systems for in-vehicle networks: a survey.

    Get PDF
    The Controller Area Network (CAN) is the most widely used in-vehicle communication protocol, which still lacks the implementation of suitable security mechanisms such as message authentication and encryption. This makes the CAN bus vulnerable to numerous cyber attacks. Various Intrusion Detection Systems (IDSs) have been developed to detect these attacks. However, the high generalization capabilities of Artificial Intelligence (AI) make AI-based IDS an excellent countermeasure against automotive cyber attacks. This article surveys AI-based in-vehicle IDS from 2016 to 2022 (August) with a novel taxonomy. It reviews the detection techniques, attack types, features, and benchmark datasets. Furthermore, the article discusses the security of AI models, necessary steps to develop AI-based IDSs in the CAN bus, identifies the limitations of existing proposals, and gives recommendations for future research directions

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    The Prominence of Artificial Intelligence in COVID-19

    Full text link
    In December 2019, a novel virus called COVID-19 had caused an enormous number of causalities to date. The battle with the novel Coronavirus is baffling and horrifying after the Spanish Flu 2019. While the front-line doctors and medical researchers have made significant progress in controlling the spread of the highly contiguous virus, technology has also proved its significance in the battle. Moreover, Artificial Intelligence has been adopted in many medical applications to diagnose many diseases, even baffling experienced doctors. Therefore, this survey paper explores the methodologies proposed that can aid doctors and researchers in early and inexpensive methods of diagnosis of the disease. Most developing countries have difficulties carrying out tests using the conventional manner, but a significant way can be adopted with Machine and Deep Learning. On the other hand, the access to different types of medical images has motivated the researchers. As a result, a mammoth number of techniques are proposed. This paper first details the background knowledge of the conventional methods in the Artificial Intelligence domain. Following that, we gather the commonly used datasets and their use cases to date. In addition, we also show the percentage of researchers adopting Machine Learning over Deep Learning. Thus we provide a thorough analysis of this scenario. Lastly, in the research challenges, we elaborate on the problems faced in COVID-19 research, and we address the issues with our understanding to build a bright and healthy environment.Comment: 63 pages, 3 tables, 17 figure

    Concepts and tools to improve the thermal energy performance of buildings and urban districts - diagnosis, assessment, improvement strategies and cost-benefit analyses

    Get PDF
    Retrofitting existing buildings to optimize their thermal energy performance is a key factor in achieving climate neutrality by 2045 in Germany. Analyzing buildings in their current condition is the first step toward preparing effective and efficient energy retrofit measures. A high-quality building analysis helps to evaluate whether a building or its components are suitable for retrofitting or replacement. Subsequently, appropriate combinations of retrofit measures that create financial and environmental synergies can be determined. This dissertation is a cumulative work based on nine papers on the thermal analysis of existing buildings. The focus of this work and related papers is on thermography with drones for building audits, intelligent processing of thermographic images to detect and assess thermal weaknesses, and building modeling approaches to evaluate thermal retrofit options. While individual buildings are usually the focus of retrofit planning, this dissertation also examines the role of buildings in the urban context, particularly on a district level. Multiple adjacent buildings offer numerous possibilities for further improving retrofits, such as the economies of scale for planning services and material procurement, neighborhood dynamics, and exchange of experiences between familiar building owners. This work reveals the opportunities and obstacles for panorama drone thermography for building audits. It shows that drones can contribute to a quick and structured data collection, particularly for large building stocks, and thus complement current approaches for district-scale analysis. However, the significant distance between the drone camera and building, which is necessary for automated flight routes, and varying recording angles limit the quantitative interpretability of thermographic images. Therefore, innovative approaches were developed to process image datasets generated using drones. A newly designed AI-based approach can automate the detection of thermal bridges on rooftops. Using generalizations about certain building classes as demonstrated by buildings from the 1950s and 1960s, a novel interpretation method for drone images is suggested. It enables decision-making regarding the need to retrofit thermal bridges of recorded buildings. A novel optimization model for German single-family houses was developed and applied in a case study to investigate the financial and ecological benefits of different thermal retrofit measures. The results showed that the retrofitting of building façades can significantly save energy. However, they also revealed that replacing the heating systems turns out to be more cost-effective for carbon dioxide savings. Small datasets, limited availability of technical equipment, and the need for simplified assumptions for building characteristics without any information were the main challenges of the approaches in this dissertation

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    corecore