2,037 research outputs found

    Reducing the effects of intersymbol interference in diffuse DPIM optical wireless systems

    Get PDF
    The paper investigates the performance of digital pulse interval modulation (DPIM) in the presence of multipath propagation and additive white Gaussian noise. To combat intersymbol interference (ISI), guard slots and a nonlinear equaliser have been introduced. The average optical power requirements (AOPR) due to ISI for cases with/without guard slots and with equaliser are analysed using a ceilingbounce model. Results obtained show that in the absence of equalisation, DPIM without guard slot offers a lower AOPR compared with on–off keying (OOK). Introducing guard slots gives a further reduction in AOPR by up to 4 dB due to the reduced duty cycle of the DPIM signal. The performance of DPIM without guard slot but using an equaliser is found to be significantly better than DPIM with guard slots on a channel with severe ISI

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    A fast-initializing digital equalizer with on-line tracking for data communications

    Get PDF
    A theory is developed for a digital equalizer for use in reducing intersymbol interference (ISI) on high speed data communications channels. The equalizer is initialized with a single isolated transmitter pulse, provided the signal-to-noise ratio (SNR) is not unusually low, then switches to a decision directed, on-line mode of operation that allows tracking of channel variations. Conditions for optimal tap-gain settings are obtained first for a transversal equalizer structure by using a mean squared error (MSE) criterion, a first order gradient algorithm to determine the adjustable equalizer tap-gains, and a sequence of isolated initializing pulses. Since the rate of tap-gain convergence depends on the eigenvalues of a channel output correlation matrix, convergence can be improved by making a linear transformation on to obtain a new correlation matrix

    Improving QPSK Transmission In Band-Limited Channels With Interchannel Interference Through Equalization

    Get PDF
    This paper describes the use of equalization in conjunction with channel filtering to improve QPSK transmission subject to both InterSymbol interference (ISI) and interchange interference (ICI). Performance bounds are computed using the nonclassical Gauss-quadrature rule (GQR) method. The signal-to-noise ratio (SNR) gain due to linear equalization over Non equalization is thereby obtained and presented. The performance of a linear equalizer thus obtained is compared with the Viterbi algorithm sequence estimator (VASE). In the absence of bounds for the VASE receiver under the channel conditions considered, simulation results are used to make the comparison. With a possible difference in the accuracies of the performance thus obtained it is shown that the VASE provides improved performance over the linear equalizer under the channel conditions considered. Copyright © 1977 by The Institute of Electrical and Electronics Engineers, Inc

    Optimal Step-Size Constant Modulus Algorithm

    Get PDF
    International audienceThe step size leading to the global minimum of the constant modulus (CM) criterion along the search direction can be obtained algebraically at each iteration among the roots of a third-degree polynomial. The resulting optimal step-size CMA (OS-CMA) is compared with other CM-based iterative techniques in terms of performance-versus-complexity trade-off

    A low-complexity iterative channel estimation and detection technique for doubly selective channels

    Get PDF
    In this paper, we propose a low-complexity iterative joint channel estimation, detection and decoding technique for doubly selective channels. The key is a segment-by-segment frequency domain equalization (FDE) strategy under the assumption that channel is approximately static within a short segment. Guard gaps (for cyclic prefixing or zero padding) are not required between adjacent segments, which avoids the power and spectral overheads due to the use of cyclic prefix (CP) in the conventional FDE technique. A low-complexity bi-directional channel estimation algorithm is also developed to exploit correlation information of time-varying channels. Simulation results are provided to demonstrate the efficiency of the proposed algorithms. © 2008 IEEE

    An algorithm for calculating the QR and singular value decompositions of polynomial matrices

    Get PDF
    In this paper, a new algorithm for calculating the QR decomposition (QRD) of a polynomial matrix is introduced. This algorithm amounts to transforming a polynomial matrix to upper triangular form by application of a series of paraunitary matrices such as elementary delay and rotation matrices. It is shown that this algorithm can also be used to formulate the singular value decomposition (SVD) of a polynomial matrix, which essentially amounts to diagonalizing a polynomial matrix again by application of a series of paraunitary matrices. Example matrices are used to demonstrate both types of decomposition. Mathematical proofs of convergence of both decompositions are also outlined. Finally, a possible application of such decompositions in multichannel signal processing is discussed
    • …
    corecore