436 research outputs found

    How Physicality Enables Trust: A New Era of Trust-Centered Cyberphysical Systems

    Full text link
    Multi-agent cyberphysical systems enable new capabilities in efficiency, resilience, and security. The unique characteristics of these systems prompt a reevaluation of their security concepts, including their vulnerabilities, and mechanisms to mitigate these vulnerabilities. This survey paper examines how advancement in wireless networking, coupled with the sensing and computing in cyberphysical systems, can foster novel security capabilities. This study delves into three main themes related to securing multi-agent cyberphysical systems. First, we discuss the threats that are particularly relevant to multi-agent cyberphysical systems given the potential lack of trust between agents. Second, we present prospects for sensing, contextual awareness, and authentication, enabling the inference and measurement of ``inter-agent trust" for these systems. Third, we elaborate on the application of quantifiable trust notions to enable ``resilient coordination," where ``resilient" signifies sustained functionality amid attacks on multiagent cyberphysical systems. We refer to the capability of cyberphysical systems to self-organize, and coordinate to achieve a task as autonomy. This survey unveils the cyberphysical character of future interconnected systems as a pivotal catalyst for realizing robust, trust-centered autonomy in tomorrow's world

    The Internet of Simulation: Enabling Agile Model Based Systems Engineering for Cyber-Physical Systems

    Get PDF
    The expansion of the Internet of Things (IoT) has resulted in a complex cyber-physical system of systems that is continually evolving. With ever more complex systems being developed and changed there has been an increasing reliance on simulation as a vital part of the design process. There is also a growing need for simulation integration and co-simulation in order to analyse the complex interactions between system components. To this end we propose that the Internet of Simulation (IoS) as an extension of IoT can be used to meet these needs. The IoS allows for multiple heterogeneous simulations to be integrated together for co-simulation. It's effect on the engineer process is to facilitate agile practices without sacrificing rigour. An Industry 4.0 example case study is provided showing how IoS could be utilized

    DIVIDER: Modelling and Evaluating Real-Time Service-Oriented Cyberphysical Co-Simulations

    Get PDF
    The ability to reliably distribute simulations across a distributed system and seamlessly integrate them as a workflow regardless of their level of abstraction is critical to improving the quality of product manufacturing. This paper presents the DIVIDER architecture for managing and maintaining real-time performance simulations integrated through SOAs. The described approach captures features present in complex workflow patterns such as asynchronous arbitrary cycles and estimates the worst case execution time in the context of the interfering execution environment

    In Pursuit of Aviation Cybersecurity: Experiences and Lessons From a Competitive Approach

    Get PDF
    The passive and independent localization of aircraft has been the subject of much cyberphysical security research. We designed a multistage open competition focusing on the offline batch localization problem using opportunistic data sources. We discuss setup, results, and lessons learned
    • …
    corecore