31 research outputs found

    Architecting a family of space tugs based on orbital transfer mission scenarios

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004.Includes bibliographical references (p. 209-215).The consequences of satellite misplacement or collision with space debris reach far beyond the realm of money. The vast number of people affected by the loss of just one spacecraft indicates the vulnerability of our society to spacecraft failure. Thus, one of the biggest problems that satellite makers face today is the lack of a margin of error of any type. This thesis analyzes the business case for employing a special type of on-orbit servicer referred to as a space tug as an alternative to redundancy and replacement option. The main objective of a space tug is to prevent satellites from prematurely ending their missions. It was found to be more realistic to design a tug (or tugs) that service groups of satellites with similar orbital and physical characteristics, rather than to design a "monster" vehicle expected to traverse the huge distances between LEO and GEO and deal with satellites of all types and sizes. Thus, the approach of this work was based on the exploration of the entire satellite population currently in orbit around Earth and on the identification of potential target groups of satellites, along with mission scenarios for servicing each of these groups. Eight mission scenarios were identified as most necessary. Two of them-GEO communications satellite retirement and satellite rescue-were presented as case studies to illustrate the modeling approach suggested by this thesis. The ultimate objective of the research was to create a family of modular, economically feasible space tugs that used a common platform and shared various components, which would allow to provide relatively inexpensive and responsive on-demand tugging services. It was found that the optimal space tug for GEO retirement missions should be(cont.) initially parked in the GEO belt and be controlled via supervision. This space tug should have a 300-kg low capability grappling mechanism and utilize storable bipropellant (Isp = 325 sec). The maximum number of satellites the tug could visit was calculated to be 20. The minimum fee for the service was estimated to be 20.48M,andtheuncertaintyofcostestimationsshouldnotexceed20.48M, and the uncertainty of cost estimations should not exceed 7.5M for the nominal case. The optimal tug for satellite rescue missions was an ion electric spacecraft parked on Earth and controlled via supervision. It was not designed as reusable, and various types of grappling mechanisms or any number of fuel tanks could be attached to it, depending on mission requirements. Both architectures could use a common bus and share the same type of grappling devices.by Kalina K. Galabova.S.M

    Machine-Vision-Based Pose Estimation System Using Sensor Fusion for Autonomous Satellite Grappling

    Get PDF
    When capturing a non-cooperative satellite during an on-orbit satellite servicing mission, the position and orientation (pose) of the satellite with respect to the servicing vessel is required in order to guide the robotic arm of the vessel towards the satellite. The main objective of this research is the development of a machine vision-based pose estimation system for capturing a non-cooperative satellite. The proposed system finds the satellite pose using three types of natural geometric features: circles, lines and points, and it merges data from two monocular cameras and three different algorithms (one for each type of geometric feature) to increase the robustness of the pose estimation. It is assumed that the satellite has an interface ring (which is used to attach a satellite to the launch vehicle) and that the cameras are mounted on the robot end effector which contains the capture tool to grapple the satellite. The three algorithms are based on a feature extraction and detection scheme to provide the detected geometric features on the camera images that belong to the satellite, which its geometry is assumed to be known. Since the projection of a circle on the image plane is an ellipse, an ellipse detection system is used to find the 3D-coordinates of the center of the interface ring and its normal vector using its corresponding detected ellipse on the image plane. The sensor and data fusion is performed in two steps. In the first step, a pose solver system finds pose using the conjugate gradient method to optimize a cost function and to reduce the re-projection error of the detected features, which reduces the pose estimation error. In the second step, an extended Kalman filter merges data from the pose solver and the ellipse detection system, and gives the final estimated pose. The inputs of the pose estimation system are the camera images and the outputs are the position and orientation of the satellite with respect to the end-effector where the cameras are mounted. Virtual and real simulations using a full-scale realistic satellite-mockup and a 7DOF robotic manipulator were performed to evaluate the system performance. Two different lighting conditions and three scenarios each with a different set of features were used. Tracking of the satellite was performed successfully. The total translation error is between 25 mm and 50 mm and the total rotation error is between 2 deg and 3 deg when the target is at 0.7 m from the end effector

    Autonomous Visual Servo Robotic Capture of Non-cooperative Target

    Get PDF
    This doctoral research develops and validates experimentally a vision-based control scheme for the autonomous capture of a non-cooperative target by robotic manipulators for active space debris removal and on-orbit servicing. It is focused on the final capture stage by robotic manipulators after the orbital rendezvous and proximity maneuver being completed. Two challenges have been identified and investigated in this stage: the dynamic estimation of the non-cooperative target and the autonomous visual servo robotic control. First, an integrated algorithm of photogrammetry and extended Kalman filter is proposed for the dynamic estimation of the non-cooperative target because it is unknown in advance. To improve the stability and precision of the algorithm, the extended Kalman filter is enhanced by dynamically correcting the distribution of the process noise of the filter. Second, the concept of incremental kinematic control is proposed to avoid the multiple solutions in solving the inverse kinematics of robotic manipulators. The proposed target motion estimation and visual servo control algorithms are validated experimentally by a custom built visual servo manipulator-target system. Electronic hardware for the robotic manipulator and computer software for the visual servo are custom designed and developed. The experimental results demonstrate the effectiveness and advantages of the proposed vision-based robotic control for the autonomous capture of a non-cooperative target. Furthermore, a preliminary study is conducted for future extension of the robotic control with consideration of flexible joints

    On-orbit serviceability of space system architectures

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2006.Includes bibliographical references (p. 171-182).On-orbit servicing is the process of improving a space-based capability through a combination of in-orbit activities which may include inspection; rendezvous and docking; and value-added modifications to a satellite's position, orientation, and operational status. As a means to extend the useful life or operational flexibility of spacecraft, on-orbit servicing constitutes one pathway to a responsive space enterprise. Following launch, traditional satellite operations are tightly constrained by an inability to access the orbiting vehicle. With the exception of software upgrades from ground controllers, operators are wedded to supporting payload technologies that become rapidly obsolete and to bus structures that deform during the stress of launch and degrade in the harsh environment of space. On-orbit servicing offers satellite operators an option for maintaining or improving space-based capabilities without launching a new spacecraft. Numerous studies have been performed on on-orbit servicing, particularly regarding the architecture of the servicing provider. Several customer valuation case studies have also been performed to identify the economic case (or lack thereof) for different categories of servicing missions.(cont.) Little work, however, has been done to analyze the tradespace of potential on-orbit servicing customers-a global analysis of operational satellites currently orbiting the Earth. The goal of this research is to develop and test a methodology to assess the physical amenability of satellites currently in operation to on-orbit servicing. As defined here, physical amenability of a target satellite, or "serviceability," refers to the relative complexity required of a teleoperated or autonomously controlled robotic vehicle to accomplish on-orbit servicing. A three-step process is followed to perform serviceability assessments. First, a taxonomy of space systems is constructed to add structure to the problem and to identify satellite attributes that drive servicing mission complexity. Second, a methodology is proposed to assess serviceability across the four servicing activities of rendezvous, acquire, access, and service.(cont.) This includes development of an agent-based model based on orbital transfers as well as a generalized framework in which serviceability is decomposed into four elements: (1) knowledge, (2) scale, (3) precision, and (4) timing. Third, the value of architecture frameworks and systems engineering modeling languages for conducting serviceability assessments is explored through the development of a discrete event simulation of the Hubble Space Telescope. The thesis concludes with prescriptive technical considerations for designing serviceable satellites and a discussion of the political, legal, and financial challenges facing servicing providers.by Matthew G. Richards.S.M

    Critical Issues in the History of Spaceflight

    Get PDF
    At a May 1981 "Proseminar in Space History"held at the Smithsonian Institution's National Air and Space Museum (NASM) in Washington, DC, historians came together to consider the state of the discipline of space history. It was an historic occasion. The community of scholars interested in the history of spaceflight was not large; previously, well-meaning but untrained aficionados consumed with artifacts had dominated the field, to the exclusion of the larger context. At a fundamental level, this proseminar represented a "declaration of independence" for what might be called the "new aerospace history." In retrospect, it may be interpreted as marking the rise of space history as a recognizable subdiscipline within the field of U.S. history. Bringing together a diverse collection of scholars to review the state of the art in space history, this proseminar helped in a fundamental manner to define the field and to chart a course for future research. Its participants set about the task of charting a course for collecting, preserving, and disseminating the history of space exploration within a larger context of space policy and technology. In large measure, the course charted by the participants in this 1981 proseminar aided in advancing a very successful agenda of historical research, writing, and understanding of space history. Not every research project has yielded acceptable results, nor can it be expected to do so, but the sum of the effort since 1981 has been impressive. The opportunities for both the exploration of space and for recording its history have been significant. Both endeavors are noble and aimed at the enhancement of humanity. Whither the history of spaceflight? Only time will tell. But there has been an emergent "new aerospace history" of which space history is a central part that moves beyond an overriding concern for the details of the artifact to emphasize the broader role of the spacecraft. More importantly, it emphasizes the whole technological system, including not just the vehicle but also the other components that make up the aerospace climate, as an integral part of the human experience. It suggests that many unanswered questions spur the development of flight and that inquisitive individuals seek to know that which they do not understand

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Comparative Analysis of Small Non-Coding RNA and Messenger RNA Expression in Somatic Cell Nuclear Transfer and In Vitro-Fertilized Bovine Embryos During Early Development Through the Maternal-to-Embryonic Transition

    Get PDF
    Cloning animals using somatic cell nuclear transfer (scNT) was first successfully demonstrated with the birth of Dolly the sheep, but the process of cloning remains highly inefficient. By improving our understanding of the errors that may occur during cloned cattle embryo development, we could obtain a greater understanding of how specific molecular events contribute to successful development. The central dogma of biology refers to the process of DNA being transcribed into messenger RNA (mRNA) and the translation of mRNA into proteins, which ultimately carry out the functions encoded by genes. The epigenetic code is defined as the array of chemical modifications, or “marks”, to DNA molecules that do not change the genome sequence but do allow for control of gene expression. During early development, genome reprogramming involves the removal of epigenetic marks from the sperm and egg and re-establishment of marks for the embryonic genome that code for proper gene expression to support embryo development. The point during this process at which the embryo’s genes are turned on is known as embryonic genome activation (EGA). Small non-coding RNAs (sncRNAs), including microRNAs (miRNAs), may also contribute to the this process. For example, miRNA molecules do not code for proteins themselves, but rather bind to mRNAs and effectively block their translation into protein. We hypothesized that aberrant expression of sncRNAs in cloned embryos may lead to anomalous abundance of mRNA molecules, thus explaining poor development of cloned embryos. First, we used RNA sequencing to examine the total population of sncRNAs in cattle embryos produced by in vitro fertilization (IVF) and found a dramatic shift in populations at the EGA. Next, we collected both sncRNA and mRNA from scNT cattle embryos, and again performed sequencing of both RNA fractions. We found that few sncRNAs were abnormally expressed in scNT embryos, with all differences appearing after EGA at the morula developmental stage. However, notable differences in the populations of sncRNAs were evident when comparing embryos by developmental stage. For populations of mRNA, we observed dramatic differences when comparing scNT and IVF cattle embryos, with the highest number of changes occurring at the EGA (8-cell stage) and after (morula stage). While changes in specific miRNA molecules (miR-34a and miR-345) were negatively correlated with some of their predicted target mRNAs, this pattern was not widespread as would be expected if these sncRNAs are functionally binding to all of the predicted mRNA targets. Collectively, our observations suggest that other mechanisms leading to altered expression of mRNA in cloned embryos may be responsible for their relatively poor development

    Return to Flight Task Group

    Get PDF
    It has been 29 months since Columbia was lost over East Texas in February 2003. Seven months after the accident, the Columbia Accident Investigation Board (CAIB) released the first volume of its final report, citing a variety of technical, managerial, and cultural issues within NASA and the Space Shuttle Program. To their credit, NASA offered few excuses, embraced the report, and set about correcting the deficiencies noted by the accident board. Of the 29 recommendations issued by the CAIB, 15 were deemed critical enough that the accident board believed they should be implemented prior to returning the Space Shuttle to flight. Some of these recommendations were relatively easy, most were straightforward, a few bordered on the impossible, and others were largely overcome by events, particularly the decision by the President to retire the Space Shuttle by 2010. The Return to Flight Task Group (RTF TG, or simply, the Task Group) was chartered by the NASA Administrator in July 2003 to provide an independent assessment of the implementation of the 15 CAIB return-to-flight recommendations. An important observation must be stated up-front: neither the CAIB nor the RTF TG believes that all risk can be eliminated from Space Shuttle operations; nor do we believe that the Space Shuttle is inherently unsafe. What the CAIB and RTF TG do believe, however, is that NASA and the American public need to understand the risks associated with space travel, and that NASA must make every reasonable effort to minimize such risk. Since the release of the CAIB report, NASA and the Space Shuttle Program expended enormous effort and resources toward correcting the causes of the accident and preparing to fly again. Relative to the 15 specific recommendations that the CAIB indicated should be implemented prior to returning to flight, NASA has met or exceeded most of them the Task Group believes that NASA met the intent of the CAIB for 12 of these recommendations. The remaining three recommendations were so challenging that NASA could not comply completely with the intent of the CAIB

    Hard Reading

    Get PDF
    The fifteen essays collected in Hard Reading argue that science fiction has its own internal rhetoric, relying on devices such as neologism, dialogism, semantic shifts, the use of unreliable narrators. It is a “high-information” genre which does not follow the Flaubertian ideal of le mot juste, “the right word”, preferring le mot imprévisible, “the unpredictable word”. Science fiction derives much of its energy from engagement with vital intellectual issues in the “soft sciences”, especially history, anthropology, the study of different cultures, with a strong bearing on politics. Both the rhetoric and the issues deserve to be taken much more seriously than they have been in academia, and in the wider world. Hard Reading is also a memoir of what it was like to be a committed fan, from teenage years, and also an academic struggling to find a place, at a time when a declared interest in science fiction and fantasy was the kiss of death for a career in the humanities
    corecore