347 research outputs found

    An optimal-control based integrated model of supply chain

    Get PDF
    Problems of supply chain scheduling are challenged by high complexity, combination of continuous and discrete processes, integrated production and transportation operations as well as dynamics and resulting requirements for adaptability and stability analysis. A possibility to address the above-named issues opens modern control theory and optimal program control in particular. Based on a combination of fundamental results of modern optimal program control theory and operations research, an original approach to supply chain scheduling is developed in order to answer the challenges of complexity, dynamics, uncertainty, and adaptivity. Supply chain schedule generation is represented as an optimal program control problem in combination with mathematical programming and interpreted as a dynamic process of operations control within an adaptive framework. The calculation procedure is based on applying Pontryagin’s maximum principle and the resulting essential reduction of problem dimensionality that is under solution at each instant of time. With the developed model, important categories of supply chain analysis such as stability and adaptability can be taken into consideration. Besides, the dimensionality of operations research-based problems can be relieved with the help of distributing model elements between an operations research (static aspects) and a control (dynamic aspects) model. In addition, operations control and flow control models are integrated and applicable for both discrete and continuous processes.supply chain, model of supply chain scheduling, optimal program control theory, Pontryagin’s maximum principle, operations research model,

    A branch-and-bound algorithm for stable scheduling in single-machine production systems.

    Get PDF
    Robust scheduling aims at the construction of a schedule that is protected against uncertain events. A stable schedule is a robust schedule that will change little when variations in the input parameters arise. This paper proposes a branch-and-bound algorithm for optimally solving a single-machine scheduling problem with stability objective, when a single job is anticipated to be disrupted.Branch-and-bound; Construction; Event; Job; Robust scheduling; Robustness; Scheduling; Single-machine scheduling; Stability; Systems; Uncertainty;

    Approximate Algorithms for the Combined arrival-Departure Aircraft Sequencing and Reactive Scheduling Problems on Multiple Runways

    Get PDF
    The problem addressed in this dissertation is the Aircraft Sequencing Problem (ASP) in which a schedule must be developed to determine the assignment of each aircraft to a runway, the appropriate sequence of aircraft on each runway, and their departing or landing times. The dissertation examines the ASP over multiple runways, under mixed mode operations with the objective of minimizing the total weighted tardiness of aircraft landings and departures simultaneously. To prevent the dangers associated with wake-vortex effects, separation times enforced by Aviation Administrations (e.g., FAA) are considered, adding another level of complexity given that such times are sequence-dependent. Due to the problem being NP-hard, it is computationally difficult to solve large scale instances in a reasonable amount of time. Therefore, three greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index (FPI) are proposed. Moreover, metaheuristics including Simulated Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) are introduced to improve solutions initially constructed by the proposed greedy algorithms. The performance (solution quality and computational time) of the various algorithms is compared to the optimal solutions and to each other. The dissertation also addresses the Aircraft Reactive Scheduling Problem (ARSP) as air traffic systems frequently encounter various disruptions due to unexpected events such as inclement weather, aircraft failures or personnel shortages rendering the initial plan suboptimal or even obsolete in some cases. This research considers disruptions including the arrival of new aircraft, flight cancellations and aircraft delays. ARSP is formulated as a multi-objective optimization problem in which both the schedule\u27s quality and stability are of interest. The objectives consist of the total weighted start times (solution quality), total weighted start time deviation, and total weighted runway deviation (instability measures). Repair and complete regeneration approximate algorithms are developed for each type of disruptive events. The algorithms are tested against difficult benchmark problems and the solutions are compared to optimal solutions in terms of solution quality, schedule stability and computational time

    Project scheduling under undertainty – survey and research potentials.

    Get PDF
    The vast majority of the research efforts in project scheduling assume complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. However, in the real world, project activities are subject to considerable uncertainty, that is gradually resolved during project execution. In this survey we review the fundamental approaches for scheduling under uncertainty: reactive scheduling, stochastic project scheduling, stochastic GERT network scheduling, fuzzy project scheduling, robust (proactive) scheduling and sensitivity analysis. We discuss the potentials of these approaches for scheduling projects under uncertainty.Management; Project management; Robustness; Scheduling; Stability;

    Scheduling of crude oil and product blending and distribution operations in a refinery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Managing disruptions in a refinery supply chain using agent-based technique

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore