65 research outputs found

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown

    Simulation and Control of Groups of People in Multi-modal Mobility

    Get PDF
    Tourism and transport are constantly growing and, with it, the movements of travellers. This entails two fundamental effects on which we must focus: control of mass tourism and the organization of transport. Good transport organization and travel planning avoid crowds and therefore mass tourism. This allows promoting sustainable tourism in which it is sought to offer a quality service to tourists taking care of the environment. In this thesis the objective is to manage the flow of groups of people through means of transport. This control of groups of people is aimed at customer satisfaction by offering quality tourism. On the one hand, the study focuses on the problem to mitigate the negative effects due to mass arrivals in touristic locations. A TEN network has been developed to define the optimal tours for different groups of tourists. A related mixed integer quadratic optimization model has been developed with three main objectives: it minimizes the maximum value of occupancy in the selected destinations to limit mass tourism, reduces the divergence between the proposed visit tour and one required by the tourist group and the overall duration of their visit, and a heuristic approach has been introduced. On the other hand, it has been implemented a railway scheduling and rescheduling problem introducing optimization-based and min-max approaches on the regional and high-speed railway network. The scheduling model defines the best schedules for a set of trains considering costumers\u2019 demand and the priority of the trains to cover the rail sections in case of conflict on the railway lines. Consecutively, the generated feasible timetables are used to minimize possible consequences due to events that may negatively affect the real time traffic management. The main contribution of this section is the introduction in the second approach the innovative concept to prioritize the train that can access on the block section in case of conflicts on the network

    Cooperative control of high-speed trains for headway regulation: A self-triggered model predictive control based approach

    Get PDF
    The advanced train-to-train and train-to-ground communication technologies equipped in high-speed railways have the potential to allow trains to follow each with a steady headway and improve the safety and performance of the railway systems. A key enabler is a train control system that is able to respond to unforeseen disturbances in the system (e.g., incidents, train delays), and to adjust and coordinate the train headways and speeds. This paper proposes a multi-train cooperative control model based on the dynamic features during train longitude movement to adjust train following headway. In particular, our model simultaneously considers several practical constraints, e.g., train controller output constraints, safe train following distance, as well as communication delays and resources. Then, this control problem is solved through a rolling horizon approach by calculating the Riccati equation with Lagrangian multipliers. Due to the practical communication resource constraints and riding comfort requirement, we also improved the rolling horizon approach into a novel self-triggered model predictive control scheme to overcome these issues. Finally, two case studies are given through simulation experiments. The simulation results are analyzed which demonstrate the effectiveness of the proposed approach

    Proceedings of the 3rd International Conference on Models and Technologies for Intelligent Transportation Systems 2013

    Get PDF
    Challenges arising from an increasing traffic demand, limited resource availability and growing quality expectations of the customers can only be met successfully, if each transport mode is regarded as an intelligent transportation system itself, but also as part of one intelligent transportation system with “intelligent” intramodal and intermodal interfaces. This topic is well reflected in the Third International Conference on “Models and Technologies for Intelligent Transportation Systems” which took place in Dresden 2013 (previous editions: Rome 2009, Leuven 2011). With its variety of traffic management problems that can be solved using similar methods and technologies, but with application specific models, objective functions and constraints the conference stands for an intensive exchange between theory and practice and the presentation of case studies for all transport modes and gives a discussion forum for control engineers, computer scientists, mathematicians and other researchers and practitioners. The present book comprises fifty short papers accepted for presentation at the Third Edition of the conference. All submissions have undergone intensive reviews by the organisers of the special sessions, the members of the scientific and technical advisory committees and further external experts in the field. Like the conference itself the proceedings are structured in twelve streams: the more model-oriented streams of Road-Bound Public Transport Management, Modelling and Control of Urban Traffic Flow, Railway Traffic Management in four different sessions, Air Traffic Management, Water Traffic and Traffic and Transit Assignment, as well as the technology-oriented streams of Floating Car Data, Localisation Technologies for Intelligent Transportation Systems and Image Processing in Transportation. With this broad range of topics this book will be of interest to a number of groups: ITS experts in research and industry, students of transport and control engineering, operations research and computer science. The case studies will also be of interest for transport operators and members of traffic administration

    Modelling of interactions between rail service and travel demand: a passenger-oriented analysis

    Get PDF
    The proposed research is situated in the field of design, management and optimisation in railway network operations. Rail transport has in its favour several specific features which make it a key factor in public transport management, above all in high-density contexts. Indeed, such a system is environmentally friendly (reduced pollutant emissions), high-performing (high travel speeds and low values of headways), competitive (low unitary costs per seat-km or carried passenger-km) and presents a high degree of adaptability to intermodality. However, it manifests high vulnerability in the case of breakdowns. This occurs because a faulty convoy cannot be easily overtaken and, sometimes, cannot be easily removed from the line, especially in the case of isolated systems (i.e. systems which are not integrated into an effective network) or when a breakdown occurs on open tracks. Thus, re-establishing ordinary operational conditions may require excessive amounts of time and, as a consequence, an inevitable increase in inconvenience (user generalised cost) for passengers, who might decide to abandon the system or, if already on board, to exclude the railway system from their choice set for the future. It follows that developing appropriate techniques and decision support tools for optimising rail system management, both in ordinary and disruption conditions, would consent a clear influence of the modal split in favour of public transport and, therefore, encourage an important reduction in the externalities caused by the use of private transport, such as air and noise pollution, traffic congestion and accidents, bringing clear benefits to the quality of life for both transport users and non-users (i.e. individuals who are not system users). Managing to model such a complex context, based on numerous interactions among the various components (i.e. infrastructure, signalling system, rolling stock and timetables) is no mean feat. Moreover, in many cases, a fundamental element, which is the inclusion of the modelling of travel demand features in the simulation of railway operations, is neglected. Railway transport, just as any other transport system, is not finalised to itself, but its task is to move people or goods around, and, therefore, a realistic and accurate cost-benefit analysis cannot ignore involved flows features. In particular, considering travel demand into the analysis framework presents a two-sided effect. Primarily, it leads to introduce elements such as convoy capacity constraints and the assessment of dwell times as flow-dependent factors which make the simulation as close as possible to the reality. Specifically, the former allows to take into account the eventuality that not all passengers can board the first arriving train, but only a part of them, due to overcrowded conditions, with a consequent increase in waiting times. Due consideration of this factor is fundamental because, if it were to be repeated, it would make a further contribution to passengers’ discontent. While, as regards the estimate of dwell times on the basis of flows, it becomes fundamental in the planning phase. In fact, estimating dwell times as fixed values, ideally equal for all runs and all stations, can induce differences between actual and planned operations, with a subsequent deterioration in system performance. Thus, neglecting these aspects, above all in crowded contexts, would render the simulation distorted, both in terms of costs and benefits. The second aspect, on the other hand, concerns the correct assessment of effects of the strategies put in place, both in planning phases (strategic decisions such as the realisation of a new infrastructure, the improvement of the current signalling system or the purchasing of new rolling stock) and in operational phases (operational decisions such as the definition of intervention strategies for addressing disruption conditions). In fact, in the management of failures, to date, there are operational procedures which are based on hypothetical times for re-establishing ordinary conditions, estimated by the train driver or by the staff of the operation centre, who, generally, tend to minimise the impact exclusively from the company’s point of view (minimisation of operational costs), rather than from the standpoint of passengers. Additionally, in the definition of intervention strategies, passenger flow and its variation in time (different temporal intervals) and space (different points in the railway network) are rarely considered. It appears obvious, therefore, how the proposed re-examination of the dispatching and rescheduling tasks in a passenger-orientated perspective, should be accompanied by the development of estimation and forecasting techniques for travel demand, aimed at correctly taking into account the peculiarities of the railway system; as well as by the generation of ad-hoc tools designed to simulate the behaviour of passengers in the various phases of the trip (turnstile access, transfer from the turnstiles to the platform, waiting on platform, boarding and alighting process, etc.). The latest workstream in this present study concerns the analysis of the energy problems associated to rail transport. This is closely linked to what has so far been described. Indeed, in order to implement proper energy saving policies, it is, above all, necessary to obtain a reliable estimate of the involved operational times (recovery times, inversion times, buffer times, etc.). Moreover, as the adoption of eco-driving strategies generates an increase in passenger travel times, with everything that this involves, it is important to investigate the trade-off between energy efficiency and increase in user generalised costs. Within this framework, the present study aims at providing a DSS (Decision Support System) for all phases of planning and management of rail transport systems, from that of timetabling to dispatching and rescheduling, also considering space-time travel demand variability as well as the definition of suitable energy-saving policies, by adopting a passenger-orientated perspective

    Adaptive Railway Traffic Control using Approximate Dynamic Programming

    Get PDF
    Railway networks around the world have become challenging to operate in recent decades, with a mixture of track layouts running several different classes of trains with varying operational speeds. This complexity has come about as a result of the sustained increase in passenger numbers where in many countries railways are now more popular than ever before as means of commuting to cities. To address operational challenges, governments and railway undertakings are encouraging development of intelligent and digital transport systems to regulate and optimise train operations in real-time to increase capacity and customer satisfaction by improved usage of existing railway infrastructure. Accordingly, this thesis presents an adaptive railway traffic control system for realtime operations based on a data-based approximate dynamic programming (ADP) approach with integrated reinforcement learning (RL). By assessing requirements and opportunities, the controller aims to reduce delays resulting from trains that entered a control area behind schedule by re-scheduling control plans in real-time at critical locations in a timely manner. The present data-based approach depends on an approximation to the value function of dynamic programming after optimisation from a specified state, which is estimated dynamically from operational experience using RL techniques. By using this approximation, ADP avoids extensive explicit evaluation of performance and so reduces the computational burden substantially. In this thesis, formulations of the approximation function and variants of the RL learning techniques used to estimate it are explored. Evaluation of this controller shows considerable improvements in delays by comparison with current industry practices

    Ant Colony Optimisation for Dynamic and Dynamic Multi-objective Railway Rescheduling Problems

    Get PDF
    Recovering the timetable after a delay is essential to the smooth and efficient operation of the railways for both passengers and railway operators. Most current railway rescheduling research concentrates on static problems where all delays are known about in advance. However, due to the unpredictable nature of the railway system, it is possible that further unforeseen incidents could occur while the trains are running to the new rescheduled timetable. This will change the problem, making it a dynamic problem that changes over time. The aim of this work is to investigate the application of ant colony optimisation (ACO) to dynamic and dynamic multiobjective railway rescheduling problems. ACO is a promising approach for dynamic combinatorial optimisation problems as its inbuilt mechanisms allow it to adapt to the new environment while retaining potentially useful information from the previous environment. In addition, ACO is able to handle multi-objective problems by the addition of multiple colonies and/or multiple pheromone and heuristic matrices. The contributions of this work are the development of a junction simulator to model unique dynamic and multi-objective railway rescheduling problems and an investigation into the application of ACO algorithms to solve those problems. A further contribution is the development of a unique two-colony ACO framework to solve the separate problems of platform reallocation and train resequencing at a UK railway station in dynamic delay scenarios. Results showed that ACO can be e ectively applied to the rescheduling of trains in both dynamic and dynamic multi-objective rescheduling problems. In the dynamic junction rescheduling problem ACO outperformed First Come First Served (FCFS), while in the dynamic multi-objective rescheduling problem ACO outperformed FCFS and Non-dominated Sorting Genetic Algorithm II (NSGA-II), a stateof- the-art multi-objective algorithm. When considering platform reallocation and rescheduling in dynamic environments, ACO outperformed Variable Neighbourhood Search (VNS), Tabu Search (TS) and running with no rescheduling algorithm. These results suggest that ACO shows promise for the rescheduling of trains in both dynamic and dynamic multi-objective environments.Engineering and Physical Sciences Research Council (EPSRC

    Integration of passenger satisfaction in railway timetable rescheduling for major disruptions

    Get PDF
    Unexpected disruptions occur for many reasons in railway networks and cause delays, cancellations, and, eventually, passenger inconvenience. This thesis focuses on the railway timetable rescheduling problem from a macroscopic point of view in case of large disruptions, such as track unvailabilities due to, e.g., rolling stock malfunction or adverse weather conditions. Its originality is to consider three objectives when designing the so-called disposition timetable: the passenger satisfaction, the operational cost and the deviation from the undisrupted timetable. These goals are usually incompatible: for instance, the best possible service for the passengers may also be the most expensive option for the railway operator. This inadequacy is the key motivation for this thesis. The problem is formally defined as a multi-objective Integer Linear Program and solved to optimality on realistic instances. In order to understand the trade-offs between the objectives, the three-dimensional Pareto frontier is approximated using epsilon-constraints. The results on a Dutch case study indicate that adopting a demand-oriented approach for the management of disruptions not only is possible, but may lead to significant improvement in passenger satisfaction, associated with a low operational cost of the disposition timetable. For a more efficient investigation of the multiple dimensions of the problem, a heuristic solution algorithm based on adaptive large neighborhood search is also presented. The timetable is optimized using operators inspired directly from recovery strategies used in practice (such as canceling, delaying or rerouting trains, or scheduling additional trains and buses), and from optimization methods (e.g., feasibility restoration operators). Results on a Swiss case study indicate that the proposed solution approach performs well on large-scale problems, in terms of computational time and solution quality. In addition, a flexible network loading framework, defining priorities among passengers for the capacitated passenger assignment problem, is introduced. Being efficient and producing stable aggregate passenger satisfaction indicators (such as average travel time), it is used in an iterative manner for the evaluation from the passenger perspective of the timetable provided by the rescheduling meta-heuristic. The timetable rescheduling problem is a hard problem and this thesis makes significant methodological and practical contributions to the design of passenger-centric disposition timetables. It is the first attempt to explicitly integrate multiple objectives in a single framework for railway timetable rescheduling, as the state-of-the-art usually neglects passenger considerations, or considers them only implicitly. Further, the use of practice-inspired optimization methods allows railway operators to easily implement the results of the proposed framework

    Efficiency and Robustness in Railway Operations

    Get PDF
    • …
    corecore