671 research outputs found

    On the cross-validation bias due to unsupervised pre-processing

    Full text link
    Cross-validation is the de facto standard for predictive model evaluation and selection. In proper use, it provides an unbiased estimate of a model's predictive performance. However, data sets often undergo various forms of data-dependent preprocessing, such as mean-centering, rescaling, dimensionality reduction, and outlier removal. It is often believed that such preprocessing stages, if done in an unsupervised manner (that does not incorporate the class labels or response values) are generally safe to do prior to cross-validation. In this paper, we study three commonly-practiced preprocessing procedures prior to a regression analysis: (i) variance-based feature selection; (ii) grouping of rare categorical features; and (iii) feature rescaling. We demonstrate that unsupervised preprocessing procedures can, in fact, introduce a large bias into cross-validation estimates and potentially lead to sub-optimal model selection. This bias may be either positive or negative and its exact magnitude depends on all the parameters of the problem in an intricate manner. Further research is needed to understand the real-world impact of this bias across different application domains, particularly when dealing with low sample counts and high-dimensional data.Comment: 29 pages, 4 figures, 1 tabl

    Manifold Learning Approaches to Compressing Latent Spaces of Unsupervised Feature Hierarchies

    Get PDF
    Field robots encounter dynamic unstructured environments containing a vast array of unique objects. In order to make sense of the world in which they are placed, they collect large quantities of unlabelled data with a variety of sensors. Producing robust and reliable applications depends entirely on the ability of the robot to understand the unlabelled data it obtains. Deep Learning techniques have had a high level of success in learning powerful unsupervised representations for a variety of discriminative and generative models. Applying these techniques to problems encountered in field robotics remains a challenging endeavour. Modern Deep Learning methods are typically trained with a substantial labelled dataset, while datasets produced in a field robotics context contain limited labelled training data. The primary motivation for this thesis stems from the problem of applying large scale Deep Learning models to field robotics datasets that are label poor. While the lack of labelled ground truth data drives the desire for unsupervised methods, the need for improving the model scaling is driven by two factors, performance and computational requirements. When utilising unsupervised layer outputs as representations for classification, the classification performance increases with layer size. Scaling up models with multiple large layers of features is problematic, as the sizes of subsequent hidden layers scales with the size of the previous layer. This quadratic scaling, and the associated time required to train such networks has prevented adoption of large Deep Learning models beyond cluster computing. The contributions in this thesis are developed from the observation that parameters or filter el- ements learnt in Deep Learning systems are typically highly structured, and contain related ele- ments. Firstly, the structure of unsupervised filters is utilised to construct a mapping from the high dimensional filter space to a low dimensional manifold. This creates a significantly smaller repre- sentation for subsequent feature learning. This mapping, and its effect on the resulting encodings, highlights the need for the ability to learn highly overcomplete sets of convolutional features. Driven by this need, the unsupervised pretraining of Deep Convolutional Networks is developed to include a number of modern training and regularisation methods. These pretrained models are then used to provide initialisations for supervised convolutional models trained on low quantities of labelled data. By utilising pretraining, a significant increase in classification performance on a number of publicly available datasets is achieved. In order to apply these techniques to outdoor 3D Laser Illuminated Detection And Ranging data, we develop a set of resampling techniques to provide uniform input to Deep Learning models. The features learnt in these systems outperform the high effort hand engineered features developed specifically for 3D data. The representation of a given signal is then reinterpreted as a combination of modes that exist on the learnt low dimensional filter manifold. From this, we develop an encoding technique that allows the high dimensional layer output to be represented as a combination of low dimensional components. This allows the growth of subsequent layers to only be dependent on the intrinsic dimensionality of the filter manifold and not the number of elements contained in the previous layer. Finally, the resulting unsupervised convolutional model, the encoding frameworks and the em- bedding methodology are used to produce a new unsupervised learning stratergy that is able to encode images in terms of overcomplete filter spaces, without producing an explosion in the size of the intermediate parameter spaces. This model produces classification results on par with state of the art models, yet requires significantly less computational resources and is suitable for use in the constrained computation environment of a field robot

    DeepPermNet: Visual Permutation Learning

    Full text link
    We present a principled approach to uncover the structure of visual data by solving a novel deep learning task coined visual permutation learning. The goal of this task is to find the permutation that recovers the structure of data from shuffled versions of it. In the case of natural images, this task boils down to recovering the original image from patches shuffled by an unknown permutation matrix. Unfortunately, permutation matrices are discrete, thereby posing difficulties for gradient-based methods. To this end, we resort to a continuous approximation of these matrices using doubly-stochastic matrices which we generate from standard CNN predictions using Sinkhorn iterations. Unrolling these iterations in a Sinkhorn network layer, we propose DeepPermNet, an end-to-end CNN model for this task. The utility of DeepPermNet is demonstrated on two challenging computer vision problems, namely, (i) relative attributes learning and (ii) self-supervised representation learning. Our results show state-of-the-art performance on the Public Figures and OSR benchmarks for (i) and on the classification and segmentation tasks on the PASCAL VOC dataset for (ii).Comment: Accepted in IEEE International Conference on Computer Vision and Pattern Recognition CVPR 201

    An Automatic Representation Optimization and Model Selection Framework for Machine Learning

    Get PDF
    The classification problem is an important part of machine learning and occurs in many application fields like image-based object recognition or industrial quality inspection. In the ideal case, only a training dataset consisting of feature data and true class labels has to be obtained to learn the connection between features and class labels. This connection is represented by a so-called classifier model. However, even today the development of a well-performing classifier for a given task is difficult and requires a lot of expertise. Numerous challenges occur in real-world classification problems that can degrade the generalization performance. Typical challenges are not enough training samples, noisy feature data as well as suboptimal choices of algorithms or hyperparameters. Many solutions exist to tackle these challenges, such as automatic feature and model selection algorithms, hyperparameter tuning or data preprocessing methods. Furthermore, representation learning, which is connected to the recently evolving field of deep learning, is also a promising approach that aims at automatically learning more useful features out of low-level data. Due to the lack of a holistic framework that considers all of these aspects, this work proposes the Automatic Representation Optimization and Model Selection Framework, abbreviated as AROMS-Framework. The central classification pipeline contains feature selection and portfolios of preprocessing, representation learning and classification methods. An optimization algorithm based on Evolutionary Algorithms is developed to automatically adapt the pipeline configuration to a given learning task. Additionally, two kinds of extended analyses are proposed that exploit the optimization trajectory. The first one aims at a better understanding of the complex interplay of the pipeline components using a suitable visualization technique. The second one is a multi-pipeline classifier with the purpose to improve the generalization performance by fusing the decisions of several classification pipelines. Finally, suitable experiments are conducted to evaluate all aspects of the proposed framework regarding its generalization performance, optimization runtime and classification speed. The goal is to show benefits and limitations of the framework when a large variety of datasets from different real-world applications is considered.Ein Framework zur automatischen Optimierung von Merkmalsrepräsentationen und Modellen für maschinelles Lernen Das Klassifikationsproblem ist ein wichtiger Teil der Forschungsrichtung des maschinellen Lernens. Dieses Problem tritt in vielen Anwendungsbereichen wie der bildbasierten Objekterkennung oder industriellen Qualitätsinspektion auf. Im Idealfall muss nur ein Trainingsdatensatz gesammelt werden, der aus einer Menge an Merkmalsdaten und den entsprechenden, geforderten Klassenzuordnungen besteht. Das Ziel ist das Lernen des Zusammenhangs zwischen den Merkmalsdaten und den Klassenzuordnungen mittels eines sogenannten Klassifikatormodells. Auch heute noch ist die Entwicklung eines gut funktionierenden Klassifikators für eine gegebene Anwendung eine anspruchsvolle Aufgabe, die eine Menge Expertenwissen voraussetzt. In praxisnahen Anwendungen müssen viele Probleme gelöst werden, die die Leistungsfähigkeit des Klassifikators einschränken können: Es sind oft nicht ausreichend viele Trainingsdaten vorhanden, die Merkmalsdaten enthalten zu viel Rauschen oder die gewählten Algorithmen oder deren Hyperparameter sind suboptimal eingestellt. Es existiert eine Vielzahl an Lösungsansätzen für diese Herausforderungen, wie z.B. eine automatische Auswahl von Merkmalen, Klassifikatormodellen und Hyperparametern sowie geeigneten Datenvorverarbeitungsmethoden. Zudem gibt es vielversprechende Methoden des sogenannten Repräsentationslernens, das mit dem aktuellen Forschungszweig Deep Learning verbunden ist: Hier ist ein automatisches Erlernen von besseren Merkmalsrepräsentationen aus Rohdaten das Ziel. Es existiert bisher kein ganzheitliches Framework, welches all die vorhergehend genannten Aspekte miteinbezieht. Daher wird in dieser Arbeit ein automatisches Framework zur Optimierung von Merkmalsrepräsentationen und Modellen für maschinelles Lernen eingeführt, das als AROMS-Framework abgekürzt wird. Die zentrale Klassifikations-Pipeline enthält Merkmalsselektion und Algorithmen-Portfolios mit verschiedenen Vorverarbeitungsmethoden, Methoden des Repräsentationslernens sowie Klassifikatoren. Es wird ein Optimierungsverfahren basierend auf evolutionären Algorithmen präsentiert, das zur automatischen Anpassung der Pipeline-Konfiguration an ein Lernproblem genutzt wird. Weiterhin werden zwei erweiterte Analysen der Daten aus dem Verlauf des Optimierungsverfahrens vorgeschlagen: Die erste Erweiterung zielt auf eine verständliche Visualisierung des komplexen Zusammenspiels der Komponenten der Klassifikations-Pipeline ab. Die zweite Erweiterung ist ein Multi-Pipeline-Klassifikator, der die Generalisierung verbessern soll, in dem die Entscheidungen mehrerer Klassifikations-Pipelines fusioniert werden. Abschließend werden geeignete Experimente durchgeführt, um alle Aspekte des vorgeschlagenen Frameworks im Hinblick auf die Generalisierungsleistung, der Optimierungslaufzeit und der Klassifikationsgeschwindigkeit zu untersuchen. Das Ziel ist das Aufzeigen von Vorteilen und Einschränkungen des Frameworks, wenn eine große Vielfalt an Datensätzen aus verschiedenen Anwendungsbereichen betrachtet wird

    A Revision of Procedural Knowledge in the conML Framework

    Get PDF
    Machine learning methods have been used very successfully for quite some time to recognize patterns, model correlations and generate hypotheses. However, the possibilities for weighing and evaluating the resulting models and hypotheses, and the search for alternatives and contradictions are still predominantly reserved for humans. For this purpose, the novel concept of constructivist machine learning (conML) formalizes limitations of model validity and employs constructivist learning theory to enable doubting of new and existing models with the possibility of integrating, discarding, combining, and abstracting knowledge. The present work identifies issues that impede the systems capability to abstract knowledge from generated models for tasks that lie in the domain of procedural knowledge, and proposes and implements identified solutions. To this end, the conML framework has been reimplemented in the Julia programming language and subsequently been extended. Using a synthetic dataset of impedance spectra of modeled epithelia that has previously been analyzed with an existing implementation of conML, existing and new implementations are tested for consistency and proposed algorithmic changes are evaluated with respect to changes in model generation and abstraction ability when exploring unknown data. Recommendations for specific settings and suggestions for further research are derived from the results. In terms of performance, flexibility and extensibility, the new implementation of conML in Julia provides a good starting point for further research and application of the system.:Contents Abstract . . . . . III Zusammenfassung . . . . . IV Danksagung . . . . . V Selbstständigkeitserklärung . . . . . V 1. Introduction 1.1. Research Questions . . . . . 2 2. Related Work 2.1. Hybrid AI Systems . . . . . 5 2.2. Constructivist Machine Learning (conML) . . . . . 6 2.3. Implemented Methods . . . . . 9 2.3.1. Unsupervised Machine Learning . . . . . 9 2.3.2. Supervised Machine Learning . . . . . 11 2.3.3. Supervised Feature Selection . . . . . 13 2.3.4. Unsupervised Feature Selection . . . . . 17 3. Methods and Implementation 3.1. Notable Algorithmic Changes . . . . . 19 3.1.1. Rescaling of Target Values . . . . . 19 3.1.2. ExtendedWinner Selection . . . . . 21 3.2. Package Structure . . . . . 23 3.3. Interfaces and Implementation of Specific Methods . . . . . 29 3.4. Datasets . . . . . 41 4. Results 4.1. Validation Against the conML Prototype . . . . . 43 4.2. Change in Abstraction Capability . . . . . 49 4.2.1. Influence of Target Scaling . . . . . 49 4.2.2. Influence of the Parameter kappa_p . . . . . 55 4.2.3. Influence of the Winner Selection Procedure . . . . . 61 5. Discussion 5.1. Reproduction Results . . . . . 67 5.2. Rescaling of Constructed Targets . . . . . 69 5.3. kappa_p and the Selection of Winner Models . . . . . 71 6. Conclusions 6.1. Contributions of this Work . . . . . 77 6.2. Future Work . . . . . 78 A. Julia Language Reference . . . . . 81 B. Additional Code Listings . . . . . 91 C. Available Parameters . . . . . 99 C.1. Block Processing . . . . . 105 D. Configurations Reference . . . . . 107 D.1. Unsupervised Methods . . . . . 107 D.2. Supervised Methods . . . . . 108 D.3. Feature Selection . . . . . 109 D.4. Winner Selection . . . . . 110 D.5. General Settings . . . . . 110 E. Supplemental Figures . . . . . 113 E.1. Replacing MAPE with RMSE for Z-Transform Target Scaling . . . . . 113 E.2. Combining Target Rescaling, Winner Selection and High kappa_p . . . . . 119 Bibliography . . . . . 123 List of Figures . . . . . 129 List of Listings . . . . . 133 List of Tables . . . . . 135Maschinelle Lernverfahren werden seit geraumer Zeit sehr erfolgreich zum Erkennen von Mustern, Abbilden von Zusammenhängen und Generieren von Hypothesen eingesetzt. Die Möglichkeiten zum Abwägen und Bewerten der entstandenen Modelle und Hypothesen, und die Suche nach Alternativen und Widersprüchen sind jedoch noch überwiegend dem Menschen vorbehalten. Das neuartige Konzept des konstruktivistischen maschinellen Lernens (conML) formalisiert dazu die Grenzen der Gültigkeit von Modellen und ermöglicht mittels konstruktivistischer Lerntheorie ein Zweifeln über neue und bestehende Modelle mit der Möglichkeit zum Integrieren, Verwerfen, Kombinieren und Abstrahieren von Wissen. Die vorliegende Arbeit identifiziert Probleme, die die Abstraktionsfähigkeit des Systems bei Aufgabenstellungen in der Prozeduralen Wissensdomäne einschränken, bietet Lösungsvorschläge und beschreibt deren Umsetzung. Das algorithmische Framework conML ist dazu in der Programmiersprache Julia reimplementiert und anschließend erweitert worden. Anhand eines synthetischen Datensatzes von Impedanzspektren modellierter Epithelien, der bereits mit einem Prototypen des conML Systems analysiert worden ist, werden bestehende und neue Implementierung auf Konsistenz geprüft und die vorgeschlagenen algorithmischen Änderungen im Hinblick auf Veränderungen beim Erzeugen von Modellen und der Abstraktionsfähigkeit bei der Exploration unbekannter Daten untersucht. Aus den Ergebnissen werden Empfehlungen zu konkreten Einstellungen sowie Vorschläge für weitere Untersuchungen abgeleitet. Die neue Implementierung von conML in Julia bietet im Hinblick auf Performanz, Flexibilität und Erweiterbarkeit einen guten Ausgangspunkt für weitere Forschung und Anwendung des Systems.:Contents Abstract . . . . . III Zusammenfassung . . . . . IV Danksagung . . . . . V Selbstständigkeitserklärung . . . . . V 1. Introduction 1.1. Research Questions . . . . . 2 2. Related Work 2.1. Hybrid AI Systems . . . . . 5 2.2. Constructivist Machine Learning (conML) . . . . . 6 2.3. Implemented Methods . . . . . 9 2.3.1. Unsupervised Machine Learning . . . . . 9 2.3.2. Supervised Machine Learning . . . . . 11 2.3.3. Supervised Feature Selection . . . . . 13 2.3.4. Unsupervised Feature Selection . . . . . 17 3. Methods and Implementation 3.1. Notable Algorithmic Changes . . . . . 19 3.1.1. Rescaling of Target Values . . . . . 19 3.1.2. ExtendedWinner Selection . . . . . 21 3.2. Package Structure . . . . . 23 3.3. Interfaces and Implementation of Specific Methods . . . . . 29 3.4. Datasets . . . . . 41 4. Results 4.1. Validation Against the conML Prototype . . . . . 43 4.2. Change in Abstraction Capability . . . . . 49 4.2.1. Influence of Target Scaling . . . . . 49 4.2.2. Influence of the Parameter kappa_p . . . . . 55 4.2.3. Influence of the Winner Selection Procedure . . . . . 61 5. Discussion 5.1. Reproduction Results . . . . . 67 5.2. Rescaling of Constructed Targets . . . . . 69 5.3. kappa_p and the Selection of Winner Models . . . . . 71 6. Conclusions 6.1. Contributions of this Work . . . . . 77 6.2. Future Work . . . . . 78 A. Julia Language Reference . . . . . 81 B. Additional Code Listings . . . . . 91 C. Available Parameters . . . . . 99 C.1. Block Processing . . . . . 105 D. Configurations Reference . . . . . 107 D.1. Unsupervised Methods . . . . . 107 D.2. Supervised Methods . . . . . 108 D.3. Feature Selection . . . . . 109 D.4. Winner Selection . . . . . 110 D.5. General Settings . . . . . 110 E. Supplemental Figures . . . . . 113 E.1. Replacing MAPE with RMSE for Z-Transform Target Scaling . . . . . 113 E.2. Combining Target Rescaling, Winner Selection and High kappa_p . . . . . 119 Bibliography . . . . . 123 List of Figures . . . . . 129 List of Listings . . . . . 133 List of Tables . . . . . 13

    Feature selection of microarray data using genetic algorithms and artificial neural networks

    Get PDF
    Microarrays, which allow for the measurement of thousands of gene expression levels in parallel, have created a wealth of data not previously available to biologists along with new computational challenges. Microarray studies are characterized by a low sample number and a large feature space with many features irrelevant to the problem being studied. This makes feature selection a necessary pre-processing step for many analyses, particularly classification. A Genetic Algorithm -Artificial Neural Network (ANN) wrapper approach is implemented to find the highest scoring set of features for an ANN classifier. Each generation relies on the performance of a set of features trained on an ANN for fitness evaluation. A publically-available leukemia microarray data set (Golub et al., 1999), consisting of 25 AML and 47 ALL Leukemia samples, each with 7129 features, is used to evaluate this approach. Results show an increased performance over Golub\u27s initial findings

    Reservoir Computing: computation with dynamical systems

    Get PDF
    In het onderzoeksgebied Machine Learning worden systemen onderzocht die kunnen leren op basis van voorbeelden. Binnen dit onderzoeksgebied zijn de recurrente neurale netwerken een belangrijke deelgroep. Deze netwerken zijn abstracte modellen van de werking van delen van de hersenen. Zij zijn in staat om zeer complexe temporele problemen op te lossen maar zijn over het algemeen zeer moeilijk om te trainen. Recentelijk zijn een aantal gelijkaardige methodes voorgesteld die dit trainingsprobleem elimineren. Deze methodes worden aangeduid met de naam Reservoir Computing. Reservoir Computing combineert de indrukwekkende rekenkracht van recurrente neurale netwerken met een eenvoudige trainingsmethode. Bovendien blijkt dat deze trainingsmethoden niet beperkt zijn tot neurale netwerken, maar kunnen toegepast worden op generieke dynamische systemen. Waarom deze systemen goed werken en welke eigenschappen bepalend zijn voor de prestatie is evenwel nog niet duidelijk. Voor dit proefschrift is onderzoek gedaan naar de dynamische eigenschappen van generieke Reservoir Computing systemen. Zo is experimenteel aangetoond dat de idee van Reservoir Computing ook toepasbaar is op niet-neurale netwerken van dynamische knopen. Verder is een maat voorgesteld die gebruikt kan worden om het dynamisch regime van een reservoir te meten. Tenslotte is een adaptatieregel geïntroduceerd die voor een breed scala reservoirtypes de dynamica van het reservoir kan afregelen tot het gewenste dynamisch regime. De technieken beschreven in dit proefschrift zijn gedemonstreerd op verschillende academische en ingenieurstoepassingen
    corecore