211 research outputs found

    Statistical methods for topology inference, denoising, and bootstrapping in networks

    Full text link
    Quite often, the data we observe can be effectively represented using graphs. The underlying structure of the resulting graph, however, might contain noise and does not always hold constant across scales. With the right tools, we could possibly address these two problems. This thesis focuses on developing the right tools and provides insights in looking at them. Specifically, I study several problems that incorporate network data within the multi-scale framework, aiming at identifying common patterns and differences, of signals over networks across different scales. Additional topics in network denoising and network bootstrapping will also be discussed. The first problem we consider is the connectivity changes in dynamic networks constructed from multiple time series data. Multivariate time series data is often non-stationary. Furthermore, it is not uncommon to expect changes in a system across multiple time scales. Motivated by these observations, we in-corporate the traditional Granger-causal type of modeling within the multi-scale framework and propose a new method to detect the connectivity changes and recover the dynamic network structure. The second problem we consider is how to denoise and approximate signals over a network adjacency matrix. We propose an adaptive unbalanced Haar wavelet based transformation of the network data, and show that it is efficient in approximation and denoising of the graph signals over a network adjacency matrix. We focus on the exact decompositions of the network, the corresponding approximation theory, and denoising signals over graphs, particularly from the perspective of compression of the networks. We also provide a real data application on denoising EEG signals over a DTI network. The third problem we consider is in network denoising and network inference. Network representation is popular in characterizing complex systems. However, errors observed in the original measurements will propagate to network statistics and hence induce uncertainties to the summaries of the networks. We propose a spectral-denoising based resampling method to produce confidence intervals that propagate the inferential errors for a number of Lipschitz continuous net- work statistics. We illustrate the effectiveness of the method through a series of simulation studies

    Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market

    Get PDF
    Reliable estimates of volatility and correlation are fundamental in economics and finance for understanding the impact of macroeconomics events on the market and guiding future investments and policies. Dependence across financial returns is likely to be subject to sudden structural changes, especially in correspondence with major global events, such as the COVID-19 pandemic. In this work, we are interested in capturing abrupt changes over time in the dependence across US industry stock portfolios, over a time horizon that covers the COVID-19 pandemic. The selected stocks give a comprehensive picture of the US stock market. To this end, we develop a Bayesian multivariate stochastic volatility model based on a time-varying sequence of graphs capturing the evolution of the dependence structure. The model builds on the Gaussian graphical models and the random change points literature. In particular, we treat the number, the position of change points, and the graphs as object of posterior inference, allowing for sparsity in graph recovery and change point detection. The high dimension of the parameter space poses complex computational challenges. However, the model admits a hidden Markov model formulation. This leads to the development of an efficient computational strategy, based on a combination of sequential Monte-Carlo and Markov chain Monte-Carlo techniques. Model and computational development are widely applicable, beyond the scope of the application of interest in this work
    • …
    corecore