119 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Traffic Engineering in G-MPLS networks with QoS guarantees

    Get PDF
    In this paper a new Traffic Engineering (TE) scheme to efficiently route sub-wavelength requests with different QoS requirements is proposed for G-MPLS networks. In most previous studies on TE based on dynamic traffic grooming, the objectives were to minimize the rejection probability by respecting the constraints of the optical node architecture, but without considering service differentiation. In practice, some high-priority (HP) connections can instead be characterized by specific constraints on the maximum tolerable end-to-end delay and packet-loss ratio. The proposed solution consists of a distributed two-stage scheme: each time a new request arrives, an on-line dynamic grooming scheme finds a route which fulfills the QoS requirements. If a HP request is blocked at the ingress router, a preemption algorithm is executed locally in order to create room for this traffic. The proposed preemption mechanism minimizes the network disruption, both in term of number of rerouted low-priority connections and new set-up lightpaths, and the signaling complexity. Extensive simulation experiments are performed to demonstrate the efficiency of our scheme

    Resilient network dimensioning for optical grid/clouds using relocation

    Get PDF
    In this paper we address the problem of dimensioning infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We will provide an overview of our work in this area, and in particular focus on how to design the resulting grid/cloud to be resilient against network link and/or server site failures. To this end, we will exploit relocation: under failure conditions, a request may be sent to an alternate destination than the one under failure-free conditions. We will provide a comprehensive overview of related work in this area, and focus in some detail on our own most recent work. The latter comprises a case study where traffic has a known origin, but we assume a degree of freedom as to where its end up being processed, which is typically the case for e. g., grid applications of the bag-of-tasks (BoT) type or for providing cloud services. In particular, we will provide in this paper a new integer linear programming (ILP) formulation to solve the resilient grid/cloud dimensioning problem using failure-dependent backup routes. Our algorithm will simultaneously decide on server and network capacity. We find that in the anycast routing problem we address, the benefit of using failure-dependent (FD) rerouting is limited compared to failure-independent (FID) backup routing. We confirm our earlier findings in terms of network capacity savings achieved by relocation compared to not exploiting relocation (order of 6-10% in the current case studies)

    Traffic engineering in dynamic optical networks

    Get PDF
    Traffic Engineering (TE) refers to all the techniques a Service Provider employs to improve the efficiency and reliability of network operations. In IP over Optical (IPO) networks, traffic coming from upper layers is carried over the logical topology defined by the set of established lightpaths. Within this framework then, TE techniques allow to optimize the configuration of optical resources with respect to an highly dynamic traffic demand. TE can be performed with two main methods: if the demand is known only in terms of an aggregated traffic matrix, the problem of automatically updating the configuration of an optical network to accommodate traffic changes is called Virtual Topology Reconfiguration (VTR). If instead the traffic demand is known in terms of data-level connection requests with sub-wavelength granularity, arriving dynamically from some source node to any destination node, the problem is called Dynamic Traffic Grooming (DTG). In this dissertation new VTR algorithms for load balancing in optical networks based on Local Search (LS) techniques are presented. The main advantage of using LS is the minimization of network disruption, since the reconfiguration involves only a small part of the network. A comparison between the proposed schemes and the optimal solutions found via an ILP solver shows calculation time savings for comparable results of network congestion. A similar load balancing technique has been applied to alleviate congestion in an MPLS network, based on the efficient rerouting of Label-Switched Paths (LSP) from the most congested links to allow a better usage of network resources. Many algorithms have been developed to deal with DTG in IPO networks, where most of the attention is focused on optimizing the physical resources utilization by considering specific constraints on the optical node architecture, while very few attention has been put so far on the Quality of Service (QoS) guarantees for the carried traffic. In this thesis a novel Traffic Engineering scheme is proposed to guarantee QoS from both the viewpoint of service differentiation and transmission quality. Another contribution in this thesis is a formal framework for the definition of dynamic grooming policies in IPO networks. The framework is then specialized for an overlay architecture, where the control plane of the IP and optical level are separated, and no information is shared between the two. A family of grooming policies based on constraints on the number of hops and on the bandwidth sharing degree at the IP level is defined, and its performance analyzed in both regular and irregular topologies. While most of the literature on DTG problem implicitly considers the grooming of low-speed connections onto optical channels using a TDM approach, the proposed grooming policies are evaluated here by considering a realistic traffic model which consider a Dynamic Statistical Multiplexing (DSM) approach, i.e. a single wavelength channel is shared between multiple IP elastic traffic flows

    Rerouting Enhancements For Single-layer Traffic Grooming

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007İnternetin hızla büyümesi, veri iletim kapasitesi ihtiyacını arttırmaktadır. Bu ihtiyacı karşılamak için, optik taşıyıcılar metal kabloların yerini almaktadır. Bir optik taşıyıcının yüksek bant genişliğinden, dalga boyu bölümlemeli çoğullama tekniği (WDM) ile yararlanılmaktadır. Bir WDM optik ağda, optik taşıyıcı bağlantıları fiziksel topolojiyi meydana getirir. Optik çapraz bağlarla (OXC) birbirine bağlanan dalga boylarından oluşan yollara ışık yolu denir. Bir optik ağda kurulmuş tüm ışık yolları, sanal topolojiyi oluşturur. Optik ağ üzerinde yönlendirme yapmak, ışık yollarının fiziksel topoloji üzerinden yönlendirilmesi ve bağlantı isteklerinin ışık yolları üzerinden yönlendirilmesi alt problemlerini içerir; iki-katmanlı yönlendirme problemidir. Yönlendirme problemi iki katmanda ayrı ayrı çözülebileceği gibi (iki katmanlı çözüm), bütünleşik olarak da ele alınabilir (tek katmanlı çözüm). Bir dalga boyu kanalının kapasitesi, bir bağlantı isteğinin bant genişliği ihtiyacına göre çok yüksektir. Ağ kaynaklarını verimli kullanabilmek için, yüksek hızlı ışık yollarının bant genişliğini, düşük hızlı bağlantı isteklerine paylaştırmak gerekmektedir. Bu yönteme trafik “grooming” denir. Bu çalışmada, dinamik bağlantı istekleri için tasarlanmış, grooming yeteneğini de hesaba katan mevcut tek katmanlı yönlendirme çözümlerinden biri seçilerek kullanılmıştır. Bağlantıları tekrar yönlendirerek ağ kaynaklarının verimli kullanılması konusu, dinamik trafik için yaygın olarak işlenmiş bir konu değildir. Ayrıca, dinamik trafik için önerilen yeniden yönlendirme algoritmaları yeni yolların sanal katmanda aranmasına yoğunlaşmaktadır. Bu da yönlendirmenin tek katmanda ele alındığı çözümlere uygun bir yaklaşım değildir. Bu çalışmada, dinamik bağlantı istekleri için trafik grooming sorununun tek katmanlı çözümüne uygun yeniden yönlendirme yöntemleri önerilmiştir.Fast growth of internet traffic increases the demand for data transmission capacity. Optical fibers are replacing the metal wires, to meet the increasing demand. An optical fiber’s huge bandwidth capacity is exploited by Wavelength Division Multiplexing (WDM) technique. In an optical WDM network, optical fiber links form the physical topology. Paths of wavelengths connected to each other by optical cross connects (OXCs) are called lightpaths. All the lightpaths established in an optical network constitute the virtual topology. Routing connections in an optical network involves sub problems of routing the lightpaths over physical topology and routing the connections over the lightpaths; thus is a two-layer routing problem. Routing problem can be solved in two layers separately (two-layer solutions) or jointly (single-layer solutions). There exists a large a gap between the capacity of a WDM channel and the bandwidth requirement of a connection request. In order to use the network resources efficiently, low-speed traffic connections need to be multiplexed onto high-speed lightpaths. This method is referred to as traffic grooming. In this study, an existing single-layer routing solution for dynamic traffic requests, which considers traffic grooming, was applied. Rerouting connections to utilize network resources efficiently has not been widely considered for dynamic traffic conditions. Furthermore, rerouting algorithms proposed for dynamic traffic perform new path search on virtual layer. This approach is not suitable for single-layer routing solutions. In this study, rerouting enhancements for single-layer solution of traffic grooming under dynamic traffic conditions were proposed.Yüksek LisansM.Sc

    Multi-layer survivability in IP-over-WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Characterization, design and re-optimization on multi-layer optical networks

    Get PDF
    L'augment de volum de tràfic IP provocat per l'increment de serveis multimèdia com HDTV o vídeo conferència planteja nous reptes als operadors de xarxa per tal de proveir transmissió de dades eficient. Tot i que les xarxes mallades amb multiplexació per divisió de longitud d'ona (DWDM) suporten connexions òptiques de gran velocitat, aquestes xarxes manquen de flexibilitat per suportar tràfic d’inferior granularitat, fet que provoca un pobre ús d'ample de banda. Per fer front al transport d'aquest tràfic heterogeni, les xarxes multicapa representen la millor solució. Les xarxes òptiques multicapa permeten optimitzar la capacitat mitjançant l'empaquetament de connexions de baixa velocitat dins de connexions òptiques de gran velocitat. Durant aquesta operació, es crea i modifica constantment una topologia virtual dinàmica gràcies al pla de control responsable d’aquestes operacions. Donada aquesta dinamicitat, un ús sub-òptim de recursos pot existir a la xarxa en un moment donat. En aquest context, una re-optimizació periòdica dels recursos utilitzats pot ser aplicada, millorant així l'ús de recursos. Aquesta tesi està dedicada a la caracterització, planificació, i re-optimització de xarxes òptiques multicapa de nova generació des d’un punt de vista unificat incloent optimització als nivells de capa física, capa òptica, capa virtual i pla de control. Concretament s'han desenvolupat models estadístics i de programació matemàtica i meta-heurístiques. Aquest objectiu principal s'ha assolit mitjançant cinc objectius concrets cobrint diversos temes oberts de recerca. En primer lloc, proposem una metodologia estadística per millorar el càlcul del factor Q en problemes d'assignació de ruta i longitud d'ona considerant interaccions físiques (IA-RWA). Amb aquest objectiu, proposem dos models estadístics per computar l'efecte XPM (el coll d'ampolla en termes de computació i complexitat) per problemes IA-RWA, demostrant la precisió d’ambdós models en el càlcul del factor Q en escenaris reals de tràfic. En segon lloc i fixant-nos a la capa òptica, presentem un nou particionament del conjunt de longituds d'ona que permet maximitzar, respecte el cas habitual, la quantitat de tràfic extra proveït en entorns de protecció compartida. Concretament, definim diversos models estadístics per estimar la quantitat de tràfic donat un grau de servei objectiu, i diferents models de planificació de xarxa amb l'objectiu de maximitzar els ingressos previstos i el valor actual net de la xarxa. Després de resoldre aquests problemes per xarxes reals, concloem que la nostra proposta maximitza ambdós objectius. En tercer lloc, afrontem el disseny de xarxes multicapa robustes davant de fallida simple a la capa IP/MPLS i als enllaços de fibra. Per resoldre aquest problema eficientment, proposem un enfocament basat en sobre-dimensionar l'equipament de la capa IP/MPLS i recuperar la connectivitat i el comparem amb la solució convencional basada en duplicar la capa IP/MPLS. Després de comparar solucions mitjançant models ILP i heurístiques, concloem que la nostra solució permet obtenir un estalvi significatiu en termes de costos de desplegament. Com a quart objectiu, introduïm un mecanisme adaptatiu per reduir l'ús de ports opto-electrònics (O/E) en xarxes multicapa sota escenaris de tràfic dinàmic. Una formulació ILP i diverses heurístiques són desenvolupades per resoldre aquest problema, que permet reduir significativament l’ús de ports O/E en temps molt curts. Finalment, adrecem el problema de disseny resilient del pla de control GMPLS. Després de proposar un nou model analític per quantificar la resiliència en topologies mallades de pla de control, usem aquest model per proposar un problema de disseny de pla de control. Proposem un procediment iteratiu lineal i una heurística i els usem per resoldre instàncies reals, arribant a la conclusió que es pot reduir significativament la quantitat d'enllaços del pla de control sense afectar la qualitat de servei a la xarxa.The explosion of IP traffic due to the increase of IP-based multimedia services such as HDTV or video conferencing poses new challenges to network operators to provide a cost-effective data transmission. Although Dense Wavelength Division Multiplexing (DWDM) meshed transport networks support high-speed optical connections, these networks lack the flexibility to support sub-wavelength traffic leading to poor bandwidth usage. To cope with the transport of that huge and heterogeneous amount of traffic, multilayer networks represent the most accepted architectural solution. Multilayer optical networks allow optimizing network capacity by means of packing several low-speed traffic streams into higher-speed optical connections (lightpaths). During this operation, a dynamic virtual topology is created and modified the whole time thanks to a control plane responsible for the establishment, maintenance, and release of connections. Because of this dynamicity, a suboptimal allocation of resources may exist at any time. In this context, a periodically resource reallocation could be deployed in the network, thus improving network resource utilization. This thesis is devoted to the characterization, planning, and re-optimization of next-generation multilayer networks from an integral perspective including physical layer, optical layer, virtual layer, and control plane optimization. To this aim, statistical models, mathematical programming models and meta-heuristics are developed. More specifically, this main objective has been attained by developing five goals covering different open issues. First, we provide a statistical methodology to improve the computation of the Q-factor for impairment-aware routing and wavelength assignment problems (IA-RWA). To this aim we propose two statistical models to compute the Cross-Phase Modulation variance (which represents the bottleneck in terms of computation time and complexity) in off-line and on-line IA-RWA problems, proving the accuracy of both models when computing Q-factor values in real traffic scenarios. Second and moving to the optical layer, we present a new wavelength partitioning scheme that allows maximizing the amount of extra traffic provided in shared path protected environments compared with current solutions. Specifically, we define several statistical models to estimate the traffic intensity given a target grade of service, and different network planning problems for maximizing the expected revenues and net present value. After solving these problems for real networks, we conclude that our proposed scheme maximizes both revenues and NPV. Third, we tackle the design of survivable multilayer networks against single failures at the IP/MPLS layer and WSON links. To efficiently solve this problem, we propose a new approach based on over-dimensioning IP/MPLS devices and lightpath connectivity and recovery and we compare it against the conventional solution based on duplicating backbone IP/MPLS nodes. After evaluating both approaches by means of ILP models and heuristic algorithms, we conclude that our proposed approach leads to significant CAPEX savings. Fourth, we introduce an adaptive mechanism to reduce the usage of opto-electronic (O/E) ports of IP/MPLS-over-WSON multilayer networks in dynamic scenarios. A ILP formulation and several heuristics are developed to solve this problem, which allows significantly reducing the usage of O/E ports in very short running times. Finally, we address the design of resilient control plane topologies in GMPLS-enabled transport networks. After proposing a novel analytical model to quantify the resilience in mesh control plane topologies, we use this model to propose a problem to design the control plane topology. An iterative model and a heuristic are proposed and used to solve real instances, concluding that a significant reduction in the number of control plane links can be performed without affecting the quality of service of the network

    Groupage et protection du trafic dynamique dans les réseaux WDM

    Full text link
    Avec les nouvelles technologies des réseaux optiques, une quantité de données de plus en plus grande peut être transportée par une seule longueur d'onde. Cette quantité peut atteindre jusqu’à 40 gigabits par seconde (Gbps). Les flots de données individuels quant à eux demandent beaucoup moins de bande passante. Le groupage de trafic est une technique qui permet l'utilisation efficace de la bande passante offerte par une longueur d'onde. Elle consiste à assembler plusieurs flots de données de bas débit en une seule entité de données qui peut être transporté sur une longueur d'onde. La technique demultiplexage en longueurs d'onde (Wavelength Division Multiplexing WDM) permet de transporter plusieurs longueurs d'onde sur une même fibre. L'utilisation des deux techniques : WDM et groupage de trafic, permet de transporter une quantité de données de l'ordre de terabits par seconde (Tbps) sur une même fibre optique. La protection du trafic dans les réseaux optiques devient alors une opération très vitale pour ces réseaux, puisqu'une seule panne peut perturber des milliers d'utilisateurs et engendre des pertes importantes jusqu'à plusieurs millions de dollars à l'opérateur et aux utilisateurs du réseau. La technique de protection consiste à réserver une capacité supplémentaire pour acheminer le trafic en cas de panne dans le réseau. Cette thèse porte sur l'étude des techniques de groupage et de protection du trafic en utilisant les p-cycles dans les réseaux optiques dans un contexte de trafic dynamique. La majorité des travaux existants considère un trafic statique où l'état du réseau ainsi que le trafic sont donnés au début et ne changent pas. En plus, la majorité de ces travaux utilise des heuristiques ou des méthodes ayant de la difficulté à résoudre des instances de grande taille. Dans le contexte de trafic dynamique, deux difficultés majeures s'ajoutent aux problèmes étudiés, à cause du changement continuel du trafic dans le réseau. La première est due au fait que la solution proposée à la période précédente, même si elle est optimisée, n'est plus nécessairement optimisée ou optimale pour la période courante, une nouvelle optimisation de la solution au problème est alors nécessaire. La deuxième difficulté est due au fait que la résolution du problème pour une période donnée est différente de sa résolution pour la période initiale à cause des connexions en cours dans le réseau qui ne doivent pas être trop dérangées à chaque période de temps. L'étude faite sur la technique de groupage de trafic dans un contexte de trafic dynamique consiste à proposer différents scénarios pour composer avec ce type de trafic, avec comme objectif la maximisation de la bande passante des connexions acceptées à chaque période de temps. Des formulations mathématiques des différents scénarios considérés pour le problème de groupage sont proposées. Les travaux que nous avons réalisés sur le problème de la protection considèrent deux types de p-cycles, ceux protégeant les liens (p-cycles de base) et les FIPP p-cycles (p-cycles protégeant les chemins). Ces travaux ont consisté d’abord en la proposition de différents scénarios pour gérer les p-cycles de protection dans un contexte de trafic dynamique. Ensuite, une étude sur la stabilité des p-cycles dans un contexte de trafic dynamique a été faite. Des formulations de différents scénarios ont été proposées et les méthodes de résolution utilisées permettent d’aborder des problèmes de plus grande taille que ceux présentés dans la littérature. Nous nous appuyons sur la méthode de génération de colonnes pour énumérer implicitement les cycles les plus prometteurs. Dans l'étude des p-cycles protégeant les chemins ou FIPP p-cycles, nous avons proposé des formulations pour le problème maître et le problème auxiliaire. Nous avons utilisé une méthode de décomposition hiérarchique du problème qui nous permet d'obtenir de meilleurs résultats dans un temps raisonnable. Comme pour les p-cycles de base, nous avons étudié la stabilité des FIPP p-cycles dans un contexte de trafic dynamique. Les travaux montrent que dépendamment du critère d'optimisation, les p-cycles de base (protégeant les liens) et les FIPP p-cycles (protégeant les chemins) peuvent être très stables.With new technologies in optical networking, an increasing quantity of data can be carried by a single wavelength. This amount of data can reach up to 40 gigabits per second (Gbps). Meanwhile, the individual data flows require much less bandwidth. The traffic grooming is a technique that allows the efficient use of the bandwidth offered by a wavelength. It consists of assembling several low-speed data streams into a single data entity that can be carried on a wavelength. The wavelength division multiplexing (WDM) technique allows carrying multiple wavelengths on a single fiber. The use of the two techniques,WDMand traffic grooming, allows carrying a quantity of data in the order of terabits per second (Tbps) over a single optical fiber. Thus, the traffic protection in optical networks becomes an operation very vital for these networks, since a single failure can disrupt thousands of users and may result in several millions of dollars of lost revenue to the operator and the network users. The survivability techniques involve reserving additional capacity to carry traffic in case of a failure in the network. This thesis concerns the study of the techniques of grooming and protection of traffic using p-cycles in optical networks in a context of dynamic traffic. Most existing work considers a static traffic where the network status and the traffic are given at the beginning and do not change. In addition, most of these works concerns heuristic algorithms or methods suffering from critical lack of scalability. In the context of dynamic traffic, two major difficulties are added to the studied problems, because of the continuous change in network traffic. The first is due to the fact that the solution proposed in the previous period, even if optimal, does not necessarily remain optimal in the current period. Thus, a re-optimization of the solution to the problem is required. The second difficulty is due to the fact that the solution of the problem for a given period is different from its solution for the initial period because of the ongoing connections in the network that should not be too disturbed at each time period. The study done on the traffic grooming technique in the context of dynamic traffic consists of proposing different scenarios for dealing with this type of traffic, with the objective of maximizing the bandwidth of the new granted connections at each time period. Mathematical formulations of the different considered scenarios for the grooming problem are proposed. The work we have done on the problem of protection considers two types of p-cycles, those protecting links and FIPP p-cycles (p-cycle protecting paths). This work consisted primarily on the proposition of different scenarios for managing protection p-cycles in a context of dynamic traffic. Then, a study on the stability of cycles in the context of dynamic traffic was done. Formulations of different scenarios have been proposed and the proposed solution methods allow the approach of larger problem instances than those reported in the literature. We rely on the method of column generation to implicitly enumerate promising cycles. In the study of path protecting p-cycles or FIPP p-cycles, we proposed mathematical formulations for the master and the pricing problems. We used a hierarchical decomposition of the problem which allows us to obtain better results in a reasonable time. As for the basic p-cycles, we studied the stability of FIPP p-cycles in the context of dynamic traffic. The work shows that depending on the optimization criterion, the basic p-cycles (protecting the links) and FIPP p-cycles (protecting paths) can be very stable
    corecore